素数环问题

    技术2022-05-11  59

    问题描述:        将从1到n这n个整数围成一个圆环,若其中任意2个相邻的数字相加,结果均为素数,那么这个环就成为素数环。20以内的素数环:1  2  3  4  1  4  3  2  5  6 1  2  3  8  5  6  7  41  2  3  4  7  6  5  8  9  10 1  2  3  4  7  6  5  12  11  8  9  10  1  2  3  4  7  6  13  10  9  14  5  8  11  12 1  2  3  4  7  6  5  12  11  8  9  14  15  16  13  10 1  2  3  4  7  6  5  8  9  10  13  16  15  14  17  12  11  18 1  2  3  4  7  6  5  8  9  10  13  16  15  14  17  20  11  12  19  18 算法设计:        利用回溯法穷举所有可能性,找到一个后,结束程序。具体来讲,就是在第一个位置先设置为1,然后第二个位置试试2行不行,再在第三个位置试试3行不行,再在第四个位置试试4行不行,再在第五个位置试试5,发现不行,然后试试6,发现还不行,再试试7,终于可以了,继续往下试验……代码编写: import java.util.Arrays;import java.util.Random;public class MyTest {    public static void main(String[] args) {                int length = 22;      //素数环的长度        int[] b = new int[length];    //一个数组,用来标识第i个数字是否被使用过。        Arrays.fill(b, 0);      //将数组初始化为0,标识所有数字尚未被使用        int[] ring = new int[length];      //用于存放最终素数环的数组        ring[0= 1;                                //素数环的第一个数字必然为1(因为是个环,我们从1那一点开始考虑就行了)        if(primeNumRing(b, ring, 1))            printArray(ring);        else            System.out.println("不存在素数环");    }            //负责打印数组,最后输出素数环的时候用得着    public static void printArray(int a[]) {        for(int x:a) {            System.out.print(x+"  ");        }        System.out.println();    }            //用递归的方法判断素数环        //数组b用来标识某个数字是否被使用过了,数组ring用来存储素数环       //整数n表示当前正在考察素数环中的第几个数字    private static boolean primeNumRing(int[] b, int[] ring, int n) {               //当最后一个数字考察完毕后,测试一下他加上第一个数字(也就是1)是不是素数               //如果是素数,那么就说明找到了素数环,如果不是,则没有找到        if(n == b.length)            return isPrimeNum(ring[n-1]+1);               //start是循环的开始点,因为奇数的旁边必然是偶数,偶数的旁边必然是奇数              //因此若前一个数是偶数,那么当前考察的必然全是奇数,反之亦然              //因此,循环的跨度为2        int start = 2-n%2;        for(int i=start; i<b.length; i+=2{                        //如果当前考察的数字没有被使用过,并且和前一个数字相加的和为素数的话            if(b[i]==0 && isPrimeNum((i+1)+ring[n-1])) {                b[i] = 1;            //将其标识设置为"已使用"                ring[n] = i+1;   //将其放入素数环中                                //如果他后面的所有数字都符合要求,则找到素数环,反之将标识清零后,考察下一个数字                if(primeNumRing(b, ring, n+1))                    return true;                else                    b[i] = 0;            }        }        return false;    }            //判断一个数是否为素数       //这里没有使用通用的判别方法,一般来讲,素数环都不会超过30个数字       //因此需要判断的最大的数字不会超过60。       //本函数的测试因子最大为11,也就是说凡是小于168(13的平方)的素数都能够被判断,够用了    private static boolean isPrimeNum(int x) {        int[] primeNums = {235711};        int i;        for(i=0; i<primeNums.length; i++{            if(x>primeNums[i] && x%primeNums[i] == 0)                break;        }        return (i==primeNums.length);    }}  

    最新回复(0)