教你通透彻底理解:BFS和DFS优先搜索算法

    技术2022-05-13  3

    作者:July  二零一一年一月一日

    ---------------------------------

    本人参考:算法导论 本人声明:个人原创,转载请注明出处。

    ok,开始。

    翻遍网上,关于此类BFS和DFS算法的文章,很多。但,都说不出个所以然来。读完此文,我想,你对图的广度优先搜索和深度优先搜索定会有个通通透透,彻彻底底的认识。

    ---------------------

    咱们由BFS开始:首先,看下算法导论一书关于 此BFS 广度优先搜索算法的概述。算法导论第二版,中译本,第324页。广度优先搜索(BFS)在Prime最小生成树算法,和Dijkstra单源最短路径算法中,都采用了与BFS 算法类似的思想。

    //u 为 v 的先辈或父母。BFS(G, s) 1  for each vertex u ∈ V [G] - {s} 2       do color[u] ← WHITE 3          d[u] ← ∞ 4          π[u] ← NIL  //除了源顶点s之外,第1-4行置每个顶点为白色,置每个顶点u的d[u]为无穷大,  //置每个顶点的父母为NIL。 5  color[s] ← GRAY  //第5行,将源顶点s置为灰色,这是因为在过程开始时,源顶点已被发现。 6  d[s] ← 0       //将d[s]初始化为0。 7  π[s] ← NIL     //将源顶点的父顶点置为NIL。 8  Q ← Ø 9  ENQUEUE(Q, s)                  //入队  //第8、9行,初始化队列Q,使其仅含源顶点s。10  while Q ≠ Ø11      do u ← DEQUEUE(Q)    //出队  //第11行,确定队列头部Q头部的灰色顶点u,并将其从Q中去掉。12         for each v ∈ Adj[u]        //for循环考察u的邻接表中的每个顶点v13             do if color[v] = WHITE14                   then color[v] ← GRAY     //置为灰色15                        d[v] ← d[u] + 1     //距离被置为d[u]+116                        π[v] ← u            //u记为该顶点的父母17                        ENQUEUE(Q, v)        //插入队列中18         color[u] ← BLACK      //u 置为黑色

     

     

    由下图及链接的演示过程,清晰在目,也就不用多说了:

    广度优先遍历演示地址:

    http://sjjg.js.zwu.edu.cn/SFXX/sf1/gdyxbl.html

    -----------------------------------------------------------------------------------------------------------------ok,不再赘述。接下来,具体讲解深度优先搜索算法。深度优先探索算法 DFS //u 为 v 的先辈或父母。DFS(G)1  for each vertex u ∈ V [G]2       do color[u] ← WHITE3          π[u] ← NIL//第1-3行,把所有顶点置为白色,所有π 域被初始化为NIL。4  time ← 0       //复位时间计数器5  for each vertex u ∈ V [G]6       do if color[u] = WHITE7             then DFS-VISIT(u)  //调用DFS-VISIT访问u,u成为深度优先森林中一棵新的树    //第5-7行,依次检索V中的顶点,发现白色顶点时,调用DFS-VISIT访问该顶点。    //每个顶点u 都对应于一个发现时刻d[u]和一个完成时刻f[u]。DFS-VISIT(u)1  color[u] ← GRAY            //u 开始时被发现,置为白色2  time ← time +1             //time 递增3  d[u] <-time                   //记录u被发现的时间4  for each v ∈ Adj[u]   //检查并访问 u 的每一个邻接点 v5       do if color[v] = WHITE            //如果v 为白色,则递归访问v。6             then π[v] ← u                   //置u为 v的先辈7                         DFS-VISIT(v)        //递归深度,访问邻结点v8  color[u] <-BLACK         //u 置为黑色,表示u及其邻接点都已访问完成9  f [u] ▹ time ← time +1  //访问完成时间记录在f[u]中。//完第1-3行,5-7行循环占用时间为O(V),此不包括调用DFS-VISIT的时间。    对于每个顶点v(-V,过程DFS-VISIT仅被调用依次,因为只有对白色顶点才会调用此过程。第4-7行,执行时间为O(E)。因此,总的执行时间为O(V+E)。 下面的链接,给出了深度优先搜索的演示系统:

    图的深度优先遍历演示系统:

    http://sjjg.js.zwu.edu.cn/SFXX/sf1/sdyxbl.html

     

    ===============

    最后,咱们再来看深度优先搜索的递归实现与非递归实现1、DFS 递归实现:void dftR(PGraphMatrix inGraph){       PVexType v;        assertF(inGraph!=NULL,"in dftR, pass in inGraph is null/n");       printf("/n===start of dft recursive version===/n");       for(v=firstVertex(inGraph);v!=NULL;v=nextVertex(inGraph,v))              if(v->marked==0)                     dfsR(inGraph,v);       printf("/n===end of   dft recursive version===/n");}

    void dfsR(PGraphMatrix inGraph,PVexType inV){       PVexType v1;       assertF(inGraph!=NULL,"in dfsR,inGraph is null/n");       assertF(inV!=NULL,"in dfsR,inV is null/n");       inV->marked=1;       visit(inV);       for(v1=firstAdjacent(inGraph,inV);v1!=NULL;v1=nextAdjacent(inGraph,inV,v1))       //v1当为v的邻接点。              if(v1->marked==0)                     dfsR(inGraph,v1);}

     

    2、DFS 非递归实现非递归版本---借助结点类型为队列的栈实现   联系树的前序遍历的非递归实现:   可知,其中无非是分成“探左”和“访右”两大块访右需借助栈中弹出的结点进行.   在图的深度优先搜索中,同样可分成“深度探索”和“回访上层未访结点”两块:    1、图的深度探索这样一个过程和树的“探左”完全一致,只要对已访问过的结点作一个判定即可。    2、而图的回访上层未访结点和树的前序遍历中的“访右”也是一致的.但是,对于树而言,是提供rightSibling这样的操作的,因而访右相当好实现。

    在这里,若要实现相应的功能,考虑将每一个当前结点的下层结点中,如果有m个未访问结点,则最左的一个需要访问,而将剩余的m-1个结点按从左到右的顺序推入一个队列中。并将这个队列压入一个堆栈中。

       这样,当当前的结点的邻接点均已访问或无邻接点需要回访时,则从栈顶的队列结点中弹出队列元素,将队列中的结点元素依次出队,若已访问,则继续出队(当当前队列结点已空时,则继续出栈,弹出下一个栈顶的队列),直至遇到有未访问结点(访问并置当前点为该点)或直到栈为空(则当前的深度优先搜索树停止搜索)。

     

    将算法通过精简过的C源程序的方式描述如下:

    //dfsUR:功能从一个树的某个结点inV发,以深度优先的原则访问所有与它相邻的结点void dfsUR(PGraphMatrix inGraph,PVexType inV){ PSingleRearSeqQueue tmpQ;  //定义临时队列,用以接受栈顶队列及压栈时使用 PSeqStack testStack;       //存放当前层中的m-1个未访问结点构成队列的堆栈. //一些变量声明,初始化动作 //访问当前结点 inV->marked=1;    //当marked值为1时将不必再访问。 visit(inV);

     do {  flag2=0;  //flag2是一个重要的标志变量,用以、说明当前结点的所有未访问结点的个数,两个以上的用2代表  //flag2:0:current node has no adjacent which has not been visited.  //1:current node has only one adjacent node which has not been visited.  //2:current node has more than one adjacent node which have not been visited.    v1=firstAdjacent(inGraph,inV);    //邻接点v1  while(v1!=NULL) //访问当前结点的所有邻接点   {   if(v1->marked==0) //..

       {        if(flag2==0)   //当前结点的邻接点有0个未访问

        {     //首先,访问最左结点     visit(v1);     v1->marked=1;    //访问完成     flag2=1;       //

         //记录最左儿子     lChildV=v1;        //save the current node's first unvisited(has been visited at this time)adjacent node    }          else if(flag2==1)   //当前结点的邻接点有1个未访问

        {     //新建一个队列,申请空间,并加入第一个结点           flag2=2;    }    else if(flag2==2)//当前结点的邻接点有2个未被访问

        {     enQueue(tmpQ,v1);    }   }   v1=nextAdjacent(inGraph,inV,v1);  }

      if(flag2==2)//push adjacent  nodes which are not visited.  {               //将存有当前结点的m-1个未访问邻接点的队列压栈   seqPush(testStack,tmpQ);   inV=lChildV;  }  else if(flag2==1)//only has one adjacent which has been visited.   {              //只有一个最左儿子,则置当前点为最左儿子   inV=lChildV;  }  else if(flag2==0)   //has no adjacent nodes or all adjacent nodes has been visited  {      //当当前的结点的邻接点均已访问或无邻接点需要回访时,则从栈顶的队列结点中弹出队列元素,  //将队列中的结点元素依次出队,若已访问,则继续出队(当当前队列结点已空时,  //则继续出栈,弹出下一个栈顶的队列),直至遇到有未访问结点(访问并置当前点为该点)或直到栈为空。   flag=0;   while(!isNullSeqStack(testStack)&&!flag)   {        v1=frontQueueInSt(testStack);  //返回栈顶结点的队列中的队首元素    deQueueInSt(testStack);     //将栈顶结点的队列中的队首元素弹出    if(v1->marked==0)    {           visit(v1);     v1->marked=1;     inV=v1;     flag=1;                                     }   }  }                                 }while(!isNullSeqStack(testStack));//the algorithm ends when the stack is null }

    -----------------------------

    上述程序的几点说明:

    所以,这里应使用的数据结构的构成方式应该采用下面这种形式:1)队列的实现中,每个队列结点均为图中的结点指针类型.定义一个以队列尾部下标加队列长度的环形队列如下:

    struct SingleRearSeqQueue;typedef PVexType   QElemType;typedef struct SingleRearSeqQueue* PSingleRearSeqQueue;struct SingleRearSeqQueue{ int rear; int quelen; QElemType dataPool[MAXNUM];};其余基本操作不再赘述.    

    2)堆栈的实现中,每个堆栈中的结点元素均为一个指向队列的指针,定义如下:#define SEQ_STACK_LEN 1000#define StackElemType PSingleRearSeqQueuestruct SeqStack;typedef struct SeqStack* PSeqStack;struct SeqStack{ StackElemType dataArea[SEQ_STACK_LEN]; int slot;};为了提供更好的封装性,对这个堆栈实现两种特殊的操作

    2.1) deQueueInSt操作用于将栈顶结点的队列中的队首元素弹出.void deQueueInSt(PSeqStack inStack){ if(isEmptyQueue(seqTop(inStack))||isNullSeqStack(inStack)) {  printf("in deQueueInSt,under flow!/n");  return;     }     deQueue(seqTop(inStack)); if(isEmptyQueue(seqTop(inStack)))  inStack->slot--;}

    2.2) frontQueueInSt操作用以返回栈顶结点的队列中的队首元素.QElemType frontQueueInSt(PSeqStack inStack){ if(isEmptyQueue(seqTop(inStack))||isNullSeqStack(inStack)) {  printf("in frontQueueInSt,under flow!/n");  return      '/r';  }      return getHeadData(seqTop(inStack));}

     

    ===================

    ok,本文完。

                July、二零一一年一月一日。Happy 2011 new year!

    作者声明:本人July对本博客所有任何内容和资料享有版权,转载请注明作者本人July及出处。永远,向您的厚道致敬。谢谢。July、二零一零年十二月二日。

     

    本文来自博客,转载请标明出处:http://blog.csdn.net/v_JULY_v/archive/2011/01/01/6111353.aspx


    最新回复(0)