神经网络基本介绍(三):前馈网络(上)M-P model 和单层感知机

    技术2022-05-19  38

     

     

     

    上图是前馈网络基本结构,分别介绍几种前馈网络: 

    M-P model,single-layer perceptron network,multi-layer perceptron network, BP(back propagation)

     

    (一)M-P model

     

    Proposed by McCulloch & PittsConsists of fixed Structure & fixed Link-WeightsRestrain Convex-Touch Weight ⇒ output is 0Exciting Convex-Touch Weight ⇒ output is 1 when the accumulated value ≥θ

    Advantages:Simplest Feed-forward NNCan implement some Logical Operational FuncDisadvantages:I/O & weight must be discrete values: 0 or 1Link-Weight can not be adjusted dynamically

     

    (二)single-layer perceptron network

    supervised method可调权重

     

    这里y=f(s)也可以是其他函数,根据具体情况,因为这里是用来简单分类,所以sign函数就够了。

    然后计算权重,使用delta study principle。 

     

    分类结果输出。

     

     

     

     

    缺点:Only linear classifiable patterns can be classified by Single-Layer Perceptron

    linear non-classifiable patterns cannot be classified by Single-Layer Perceptron

     

     


    最新回复(0)