用MapReduce来做好友推荐

    技术2022-05-19  20

    SNS网站都有一个功能,就是好友推荐(或者Follower推荐)。例如,在人人网上出现的“你可能认识的人”。怎么来实现呢,有一个很简单的办法。如果小刚和小明不是好友,但是他们有很多的共同好友。那么可以认为,A和B很可能相识。

    从图论的讲法上看,就是先列出一个人(记为小A)的所有朋友的朋友,在寻找小A和这些人之间有多少长度为2的通路。将这些通路数排序,寻找最高的那几个就可以了。

    所以我们的Map/Reduce的任务就是:找出所有人的十个Top“推荐好友”。

    社会化网络的图一般都很简单。我们假设输入是按name排序的。

    "ricky" => [ "jay" , "peter" , "phyllis" ] "peter" => [ "dave" , "jack" , "ricky" , "susan" ]

    我们使用两轮Map/Reduce任务来完成这个操作。

    第一轮MR任务

    这个任务的目的是计算每一对距离是2的人之间的通路数。

    在Map函数中,我们先将每对朋友做一个笛卡尔乘积,说的不大清楚,举个例子,比如 "ricky" => [ "jay" , "john" , "mitch" ]

    那么结果就是

      [ "jay" , "john" ] , [ "jay" , "mitch" ] , [ "john" , "mitch" ]

    他们都是通过ricky牵线搭桥认识的。将已经是朋友的组合筛选掉,再排好序。传给Reducer。

    在Reduce函数中, 相同的组合必定会传给Reducer。所以Reducer只要数好有几个相同的组合传给他就行了. Input record … person -> connection_list e .g . "ricky" => [ "jay" , "john" , "mitch" , "peter" ] also the connection list is sorted by alphabetical order   def map (person , connection_list )   # Compute a cartesian product using nested loops   for each friend1 in connection_list       # Eliminate all 2-degree pairs if they already       # have a one-degree connection      emit ([person , friend1 , 0 ])       for each friend2 > friend1 in connection_list          emit ([friend1 , friend2 , 1 ] ,   1 )   def partition ( key )   #use the first two elements of the key to choose a reducer   return super .partition ([ key [ 0 ] , key [ 1 ]])   def reduce (person_pair , frequency_list )   # Check if this is a new pair   if @current_pair != [person_pair [ 0 ] , person_pair [ 1 ]]       @current_pair = [person_pair [ 0 ] , person_pair [ 1 ]]       # Skip all subsequent pairs if these two person       # already know each other       @skip = true if person_pair [ 2 ] == 0     if !skip       path_count = 0       for each count in frequency_list           path_count += count       emit (person_pair , path_count )   Output record person_pair => path_count e .g . [ "jay" , "john" ] => 5

    第二轮MR任务

    这一轮的MR任务是为了列出每个人距离为2的好友,查出他们直接究竟有几条路径。

    在Map函数中,我们将每一组数据重新排列,保证一个人信息落在一个reducer上在Reduce函数中,只要将每个人的可能好友之间的路径数排个序就可以了. Input record = Output record of round 1   def map (person_pair , path_count )   emit ([person_pair [ 0 ] , path_count ] , person_pair [ 1 ])   def partition ( key )   #use the first element of the key to choose a reducer   return super .partition ( key [ 0 ])   def reduce (connection_count_pair , candidate_list )   # Check if this is a new person   if @current_person != connection_count_pair [ 0 ]       emit ( @current_person , @top_ten )       @top_ten = []       @current_person = connection_count_pair [ 0 ]     #Pick the top ten candidates to connect with   if @top_ten .size < 10       for each candidate in candidate_list           @top_ten .append ([candidate , connection_count_pair [ 1 ]])           break if @pick_count > 10   Output record person -> candidate_count_list   e .g .   "ricky" => [[ "jay" , 5 ] ,   [ "peter" , 3 ] ]

    Follower推荐如果我想要做Follower推荐而不是好友推荐怎么办呢?很简单。只要将第一步的MR任务改为求“Follow关系”和“Followed”关系的笛卡尔乘积就可以了。这里就不列伪码了。


    最新回复(0)