红黑树算法的层层剖析与逐步实现

    技术2022-05-19  32

    引言: 

    昨天下午画红黑树画了好几个钟头,总共10页纸。 特此,再深入剖析红黑树的算法实现,教你如何彻底实现红黑树算法。

    经过我上一篇博文,“教你透彻了解红黑树”后,相信大家对红黑树已经有了一定的了解。 个人觉得,这个红黑树,还是比较容易懂的。 不论是插入、还是删除,不论是左旋还是右旋,最终的目的只有一个: 即保持红黑树的5个性质,不得违背。

    再次,重述下红黑树的五个性质: 一般的,红黑树,满足一下性质,即只有满足一下性质的树,我们才称之为红黑树: 1)每个结点要么是红的,要么是黑的。 2)根结点是黑的。 3)每个叶结点,即空结点(NIL)是黑的。 4)如果一个结点是红的,那么它的俩个儿子都是黑的。 5)对每个结点,从该结点到其子孙结点的所有路径上包含相同数目的黑结点。

    抓住了红黑树的那5个性质,事情就好办多了。 如, 1.红黑红黑,要么是红,要么是黑; 2.根结点是黑; 3.每个叶结点是黑; 4.一个红结点,它的俩个儿子必然都是黑的; 5.每一条路径上,黑结点的数目等同。    五条性质,合起来,来句顺口溜就是:(1)红黑 (2)黑 (3)黑 (4&5)红->黑 黑。

    本文所有的文字,都是参照我昨下午画的十张纸 (即我拍的照片) 与算法导论来写的。

    希望,你依照此文一点一点的往下看,看懂此文后,你对红黑树的算法了解程度,一定大增不少。

    ok,现在咱们来具体深入剖析红黑树的算法,并教你逐步实现此算法。

    此教程分为10个部分,每一个部分作为一个小节。且各小节与我给的十张照片一一对应。

    一、左旋与右旋

          先明确一点:为什么要左旋?

    因为红黑树插入或删除结点后,树的结构发生了变化,从而可能会破坏红黑树的性质。

    为了维持插入、或删除结点后的树,仍然是一颗红黑树,所以有必要对树的结构做部分调整,从而恢复红黑树的原本性质。

    而为了恢复红黑性质而作的动作包括:

    结点颜色的改变(重新着色),和结点的调整。

    这部分结点调整工作,改变指针结构,即是通过左旋或右旋而达到目的

    从而使插入、或删除结点的树重新成为一颗新的红黑树。

    ok,请看下图:

    如上图所示,‘找茬’

    如果你看懂了上述俩幅图有什么区别时,你就知道什么是“左旋”,“右旋”。

    在此,着重分析左旋算法:

    左旋,如图所示(左->右),以x->y之间的链为“支轴”进行,

    使y成为该新子树的根,x成为y的左孩子,而y的左孩子则成为x的右孩子。

    算法很简单,还有注意一点,各个结点从左往右,不论是左旋前还是左旋后,结点大小都是从小到大。

    左旋代码实现,分三步(注意我给的注释):

    The pseudocode for LEFT-ROTATE assumes that right[x] ≠ nil[T] and that the root's parent is nil[T].

    LEFT-ROTATE(T, x)  1  y ← right[x]            ▹ Set y.  2  right[x] ← left[y]                   //开始变化,y的左孩子成为x的右孩子

     3  if left[y]  !=nil[T]

     4  then p[left[y]] <- x                

     5  p[y] <- p[x]                       //y成为x的父母  6  if p[x] = nil[T]

     7     then root[T] <- y

     8     else if x = left[p[x]]  9             then left[p[x]] ← y 10             else right[p[x]] ← y 11  left[y] ← x             //x成为y的左孩子(一月三日修正

    12  p[x] ← y //注,此段左旋代码,原书第一版英文版与第二版中文版,有所出入。

    //个人觉得,第二版更精准。所以,此段代码以第二版中文版为准。

    左旋、右旋都是对称的,且都是在O(1)时间内完成。因为旋转时只有指针被改变,而结点中的所有域都保持不变。

    最后,贴出昨下午关于此右旋算法所画的图:

    左旋(第2张图):

    //此图有点bug。第4行的注释移到第11行。如上述代码所示。(一月三日修正)

    二、左旋的一个实例

    不做过多介绍,看下副图,一目了然。

    LEFT-ROTATE(T, x)的操作过程(第3张图):

     

    --------------------- 

    提醒, 看下文之前,请首先务必明确,区别以下俩种操作:

    1.红黑树插入、删除结点的操作

             //如插入中,红黑树插入结点操作:RB-INSERT(T, z)。

    2.红黑树已经插入、删除结点之后,

    为了保持红黑树原有的红黑性质而做的恢复与保持红黑性质的操作。

             //如插入中,为了恢复和保持原有红黑性质,所做的工作:RB-INSERT-FIXUP(T, z)。

    ok,请继续。

    三、红黑树的插入算法实现

    RB-INSERT(T, z)   //注意我给的注释...  1  y ← nil[T]                 // y 始终指向 x 的父结点。  2  x ← root[T]              // x 指向当前树的根结点,  3  while x ≠ nil[T]  4      do y ← x  5         if key[z] < key[x]           //向左,向右..  6            then x ← left[x]  7            else x ← right[x]         // 为了找到合适的插入点,x 探路跟踪路径,直到x成为NIL 为止。  8  p[z] ← y         // y置为 插入结点z 的父结点。  9  if y = nil[T] 10     then root[T] ← z 11     else if key[z] < key[y] 12             then left[y] ← z 13             else right[y] ← z     //此 8-13行,置z 相关的指针。 14  left[z] ← nil[T] 15  right[z] ← nil[T]            //设为空, 16  color[z] ← RED             //将新插入的结点z作为红色 17  RB-INSERT-FIXUP(T, z)   //因为将z着为红色,可能会违反某一红黑性质,

                                                //所以需要调用RB-INSERT-FIXUP(T, z)来保持红黑性质。

    17 行的RB-INSERT-FIXUP(T, z)  ,在下文会得到着重而具体的分析。

    还记得,我开头说的那句话么,

    是的,时刻记住,不论是左旋还是右旋,不论是插入、还是删除,都要记得恢复和保持红黑树的5个性质。

    四、调用RB-INSERT-FIXUP(T, z)来保持和恢复红黑性质

    RB-INSERT-FIXUP(T, z)  1 while color[p[z]] = RED  2     do if p[z] = left[p[p[z]]]  3           then y ← right[p[p[z]]]  4                if color[y] = RED  5                   then color[p[z]] ← BLACK                    ▹ Case 1  6                        color[y] ← BLACK                       ▹ Case 1  7                        color[p[p[z]]] ← RED                   ▹ Case 1  8                        z ← p[p[z]]                            ▹ Case 1  9                   else if z = right[p[z]] 10                           then z ← p[z]                       ▹ Case 2 11                                LEFT-ROTATE(T, z)              ▹ Case 2 12                           color[p[z]] ← BLACK                 ▹ Case 3 13                           color[p[p[z]]] ← RED                ▹ Case 3 14                           RIGHT-ROTATE(T, p[p[z]])            ▹ Case 3 15           else (same as then clause                          with "right" and "left" exchanged) 16 color[root[T]] ← BLACK

    //第4张图略:

    五、红黑树插入的三种情况,即RB-INSERT-FIXUP(T, z)。 操作过程(第5张):

    //这幅图有个小小的问题,读者可能会产生误解。图中左侧所表明的情况2、情况3所标的位置都要标上一点。

    //请以图中的标明的case1、case2、case3为准。一月三日。

    六、红黑树插入的第一种情况(RB-INSERT-FIXUP(T, z)代码的具体分析一)

    为了保证阐述清晰,重述下RB-INSERT-FIXUP(T, z)的源码:

    RB-INSERT-FIXUP(T, z)  1 while color[p[z]] = RED  2     do if p[z] = left[p[p[z]]]  3           then y ← right[p[p[z]]]  4                if color[y] = RED  5                   then color[p[z]] ← BLACK                    ▹ Case 1  6                        color[y] ← BLACK                       ▹ Case 1  7                        color[p[p[z]]] ← RED                   ▹ Case 1  8                        z ← p[p[z]]                            ▹ Case 1  9                   else if z = right[p[z]] 10                           then z ← p[z]                       ▹ Case 2 11                                LEFT-ROTATE(T, z)              ▹ Case 2 12                           color[p[z]] ← BLACK                 ▹ Case 3 13                           color[p[p[z]]] ← RED                ▹ Case 3 14                           RIGHT-ROTATE(T, p[p[z]])            ▹ Case 3 15           else (same as then clause                          with "right" and "left" exchanged) 16 color[root[T]] ← BLACK

     //case1表示情况1,case2表示情况2,case3表示情况3.

    ok,如上所示,相信,你已看到了。

    咱们,先来透彻分析红黑树插入的第一种情况:

    插入情况1,z的叔叔y是红色的。

    第一种情况,即上述代码的第5-8行:  5                   then color[p[z]] ← BLACK                    ▹ Case 1  6                        color[y] ← BLACK                       ▹ Case 1  7                        color[p[p[z]]] ← RED                   ▹ Case 1  8                        z ← p[p[z]]                            ▹ Case 1

    如上图所示,a:z为右孩子,b:z为左孩子。

    只有p[z]和y(上图a中A为p[z],D为z,上图b中,B为p[z],D为y)都是红色的时候,才会执行此情况1.

    咱们分析下上图的a情况,即z为右孩子时

    因为p[p[z]],即c是黑色,所以将p[z]、y都着为黑色(如上图a部分的右边),

    此举解决z、p[z]都是红色的问题,将p[p[z]]着为红色,则保持了性质5.

    ok,看下我昨天画的图(第6张):

    红黑树插入的第一种情况完。

    七、红黑树插入的第二种、第三种情况

    插入情况2:z的叔叔y是黑色的,且z是右孩子

    插入情况3:z的叔叔y是黑色的,且z是左孩子

    这俩种情况,是通过z是p[z]的左孩子,还是右孩子区别的。

    参照上图,针对情况2,z是她父亲的右孩子,则为了保持红黑性质,左旋则变为情况3,此时z为左孩子,

    因为z、p[z]都为黑色,所以不违反红黑性质(注,情况3中,z的叔叔y是黑色的,否则此种情况就变成上述情况1 了)。

    ok,我们已经看出来了,情况2,情况3都违反性质4(一个红结点的俩个儿子都是黑色的)。

    所以情况2->左旋后->情况3,此时情况3同样违反性质4,所以情况3->右旋,得到上图的最后那部分。

    注,情况2、3都只违反性质4,其它的性质1、2、3、5都不违背。

    好的,最后,看下我画的图(第7张):

    八、接下来,进入红黑树的删除 部分。

    RB-DELETE(T, z)  1 if left[z] = nil[T] or right[z] = nil[T]  2    then y ← z  3    else y ← TREE-SUCCESSOR(z)  4 if left[y] ≠ nil[T]  5    then x ← left[y]  6    else x ← right[y]  7 p[x] ← p[y]  8 if p[y] = nil[T]  9    then root[T] ← x 10    else if y = left[p[y]] 11            then left[p[y]] ← x 12            else right[p[y]] ← x 13 if y 3≠ z 14    then key[z] ← key[y] 15         copy y's satellite data into z 16 if color[y] = BLACK               //如果y是黑色的, 17    then RB-DELETE-FIXUP(T, x)   //则调用RB-DELETE-FIXUP(T, x)  18 return y              //如果y不是黑色,是红色的,则当y被删除时,红黑性质仍然得以保持。不做操作,返回。

                                   //因为:1.树种各结点的黑高度都没有变化。2.不存在俩个相邻的红色结点。

                                              //3.因为入宫y是红色的,就不可能是根。所以,根仍然是黑色的。

    ok,第8张图,不必贴了。

    九、红黑树删除之4种情况,RB-DELETE-FIXUP(T, x)之代码

    RB-DELETE-FIXUP(T, x)  1 while x ≠ root[T] and color[x] = BLACK  2     do if x = left[p[x]]  3           then w ← right[p[x]]  4                if color[w] = RED  5                   then color[w] ← BLACK                        ▹  Case 1  6                        color[p[x]] ← RED                       ▹  Case 1  7                        LEFT-ROTATE(T, p[x])                    ▹  Case 1  8                        w ← right[p[x]]                         ▹  Case 1  9                if color[left[w]] = BLACK and color[right[w]] = BLACK 10                   then color[w] ← RED                          ▹  Case 2 11                        x ← p[x]                                  ▹  Case 2 12                   else if color[right[w]] = BLACK 13                           then color[left[w]] ← BLACK          ▹  Case 3 14                                color[w] ← RED                  ▹  Case 3 15                                RIGHT-ROTATE(T, w)              ▹  Case 3 16                                w ← right[p[x]]                 ▹  Case 3 17                         color[w] ← color[p[x]]                 ▹  Case 4 18                         color[p[x]] ← BLACK                    ▹  Case 4 19                         color[right[w]] ← BLACK                ▹  Case 4 20                         LEFT-ROTATE(T, p[x])                   ▹  Case 4 21                         x ← root[T]                            ▹  Case 4 22        else (same as then clause with "right" and "left" exchanged) 23 color[x] ← BLACK  

    ok,很清楚,在此,就不贴第9张图了。

    在下文的红黑树删除的4种情况,详细、具体分析了上段代码。

    十、红黑树删除的4种情况

    情况1:x的兄弟w是红色的。

    情况2:x的兄弟w是黑色的,且w的俩个孩子都是黑色的。

    情况3:x的兄弟w是黑色的,w的左孩子是红色,w的右孩子是黑色。

    情况4:x的兄弟w是黑色的,且w的右孩子时红色的。

    操作流程图:

    ok,简单分析下,红黑树删除的4种情况:

    针对情况1: x的兄弟w是红色的。

     5                   then color[w] ← BLACK                        ▹  Case 1  6                        color[p[x]] ← RED                       ▹  Case 1  7                        LEFT-ROTATE(T, p[x])                    ▹  Case 1  8                        w ← right[p[x]]                         ▹  Case 1

    对策:改变w、p[z]颜色,再对p[x]做一次左旋,红黑性质得以继续保持。

    x的新兄弟new w是旋转之前w的某个孩子,为黑色。

    所以,情况1转化成情况2或3、4。

    针对情况2: x的兄弟w是黑色的,且w的俩个孩子都是黑色的。

    10                   then color[w] ← RED                          ▹  Case 2 11                        x <-p[x]                                  ▹  Case 2 如图所示,w的俩个孩子都是黑色的 ,

    对策:因为w也是黑色的,所以x和w中得去掉一黑色,最后,w变为红。

    p[x]为新结点x,赋给x,x<-p[x]。

    针对情况3: x的兄弟w是黑色的,w的左孩子是红色,w的右孩子是黑色。

    13                           then color[left[w]] ← BLACK          ▹  Case 3 14                                color[w] ← RED                  ▹  Case 3 15                                RIGHT-ROTATE(T, w)              ▹  Case 3 16                                w ← right[p[x]]                 ▹  Case 3 w为黑,其左孩子为红,右孩子为黑

    对策: 交换w和和其左孩子left[w]的颜色。 即上图的D、C颜色互换。:D。

    并对w进行右旋,而红黑性质仍然得以保持。

    现在x的新兄弟w是一个有红色右孩子的黑结点,于是将情况3转化为情况4.

    针对情况4: x的兄弟w是黑色的,且w的右孩子时红色的。

    17                         color[w] ← color[p[x]]                 ▹  Case 4 18                         color[p[x]] ← BLACK                    ▹  Case 4 19                         color[right[w]] ← BLACK                ▹  Case 4 20                         LEFT-ROTATE(T, p[x])                   ▹  Case 4 21                         x ← root[T]                            ▹  Case 4 x的兄弟w为黑色,且w的右孩子为红色 。

    对策:做颜色修改,并对p[x]做一次旋转,可以去掉x的额外黑色,来把x变成单独的黑色,此举不破坏红黑性质。

    将x置为根后,循环结束。

    最后,贴上最后的第10张图:

    ok,红黑树删除的4中情况,分析完成。

    结语:只要牢牢抓住红黑树的5个性质不放,而不论是树的左旋还是右旋, 不论是红黑树的插入、还是删除,都只为了保持和修复红黑树的5个性质而已。


    最新回复(0)