通过麦克劳林公式求出任意指数函数的底

    技术2022-05-20  27

    (defun   euler(sum  xvalue a count  high  low)

     

    (if  (< a  count)

     

           (euler  (+  sum  

     

                       (/ high  low))

     

                   xvalue  

     

                   (+  a  1)

     

                   count

     

                   (* xvalue  high 1.00)

     

                   (* a  low ))

     

           sum))

     

    (setq  sum 1)

     

    (setq  xvalue  (log 5) )

     

    (setq  a  2)

     

    (setq  count  10)

     

    (setq  high  xvalue)

     

    (setq  low  1)

     

    (euler  sum  xvalue a count  high low)

     

    (setq  count  30)

     

    (euler  sum  xvalue a count  high low)

     

    //通过5^x的麦克劳林公式,求出5的值,采用的公式是D(5^x)=5^x* { log(e) 5}.

     


    最新回复(0)