第一部分:基本功能流程CPU上电后会从IO空间的某地址取第一条指令。但此时:PLL没有启动,CPU工作频率为外部输入晶振频率,非常低;CPU工作模式、中断设置等不确定;存储空间的各个BANK(包括内存)都没有驱动,内存不能使用。在这种情况下必须在第一条指令处做一些初始化工作,这段初始化程序与操作系统独立分开,称之为bootloader。 实际上,很少有必要自己写一个Bootloader,因为U-Boot已经强大到能够满足各种需要。但是强大必然复杂,一个初学者想要分析U-Boot的源代码,还是有些难度的。出于学习的目的,我写了这个史上最简单的启动加载器,它只包含最基本的功能,却囊括了一个嵌入式Bootloader应该有的核心和精华。我把这个启动加载器命名为S-Boot, 是Simple Bootloader的缩写,亦可进一步简称为SB。 使用的实验环境为OK2440开发板,板上处理器为S3C2440A,有64M内存,Nand存储器为K9F1208,64M。网口芯片为CS8900A。我们要实现的功能是:从串口下载Linux内核映像到RAM;从网口下载Linux内核映像到RAM;从RAM启动内核挂载NFS根文件系统。
S3C2440A的PSR寄存器(Program Status Reguster)中每个Bit位的含义如图1所示。Bit4~Bit0为模式位,用来设置CPU工作模式,现在只要知道 M[4:0] = 10011 表示SVC32模式就行了。Bit5为状态位,T=0表示工作在ARM状态,T=1表示工作在Thumb状态,默认为0,不需要改变。Bit6为快速中断禁止位,F=1为禁止快速中断,F=0为使能快速中断。Bit7为中断禁止位,I=1为禁止中断,F=0为使能中断。其它Bit位暂时可以不必理会。 mrs 和msr是在PSR寄存器和其它寄存器间传递数据的指令。如:mrs r0,cpsr 把cpsr的值传送到r0中, msr cpsr,r0 把r0的值传送到cpsr中。bic是位清零(Bit Clear)指令,bic r0,r0,#0x1F 意思是把r0的Bit[4:0]位清零(由0x1F指示),然后把结果写入r0中。 orr是按位求或指令,orr r0,r0,#0xD3 表示把r0的 Bit7,Bit6,Bit4,Bit1,Bit0 置为1,其它位保持不变。 执行完上述操作后,cpsr中的 I=1, F=1, T保持不变(默认为0),M[4:0]=10011,意思是禁止IRQ,禁止FIQ,工作在ARM状态,工作在SVC32模式。 ldr r0, =0x53000000 mov r1, #0x0 str r1, [r0] @disable watch dog 禁用看门狗更简单,因为WTCON寄存器的地址为0x53000000,直接向该寄存器写0即可。 到目前为止,CPU工作在外接晶振12MHz频率之下。使用以下代码设置PLL,提升工作频率。 ldr r0, =0x4C000014 @CLKDIVN register mov r1, #0x05 @FCLK:HCLK:PCLK = 1:4:8 str r1, [r0] mrc p15,0,r0,c1,c0,0 @if HDIVN Not 0, must asynchronous bus mode orr r0,r0,#0xC0000000 @see S3C2440A manual P7-9 mcr p15,0,r0,c1,c0,0 ldr r0, =0x4C000004 @MPLLCON register ldr r1, =0x0005C011 @((92<<12)|(1<<4)|(1)) str r1, [r0] @FCLK is 400 MHz ! 最后的结果是,FCLK=400MHz,HCLK=100MHz,PCLK=50MHz。 @ SDRAM Init mov r1, #0x48000000 @MEM_CTL_BASE adrl r2, mem_cfg_val add r3, r1, #521: ldr r4, [r2], #4 @ 读取设置值,并让r2加4 str r4, [r1], #4 @ 将此值写入寄存器,并让r1加4 cmp r1, r3 @ 判断是否设置完所有13个寄存器 bne 1b @ 若没有写成,继续 设置存储控制器。 ldr sp, =0x32FFF000 @设置堆栈 bl nand_init @初始化NAND Flash @nand_read_ll函数需要3个参数: ldr r0, =0x33000000 @1. 目标地址=0x30000000,这是SDRAM的起始地址 mov r1, #0 @2. 源地址 =0,S-Boot代码都存在NAND地址0开始处 mov r2, #102400 @3. 复制长度=102400(bytes) bl nand_read @调用C函数nand_read ldr lr, =halt_loop @设置返回地址 ldr pc, =main @b指令和bl指令只能前后跳转32M的范围,故使用向pc赋值的方法进行跳转halt_loop: b halt_loop 这里把所有的代码从Nand拷贝到RAM中,然后跳转到main函数去执行。此后程序便在RAM中运行了。但是到目前为止,前面的程序都是在SteppingStone里运行的。所谓SteppingStone,是指 在 S3C2440A的内部的 4KB的 RAM缓存 ,它总是映射到地址 0x00处。硬件加电后会自动将 Nand Flash中的前 4KB的数据拷贝到 Stepping Stone中,然后从地址 0x00处开始运行 。 如果 代码足够小(小于 4KB)的话,那只在 SteppingStone中运行,加载 Linux内核到内存即可。但通常 代码肯定会大于 4KB。所以 Bootloader 一般分为两部分,Stage1的代码在 SteppingStone中运行,它会把Stage2的代码拷贝到RAM中 ,并跳转到 RAM中执行;Stage2的代码在RAM中执行, 它可以完成加载内核及其它任何复杂的功能。因为Stage2的起始位置不好确定,为了方便,我们把所有的代码都拷贝到RAM中了。 C 函数nand_read有三个参数,第一个参数为目的地起始地址,第二个参数为源起始地址,第三个参数为要复制的数据长度,以字节为单位。根据ATPCS 函数调用规则,三个参数分别用寄存器r0,r1,r2来传递。我们在内存的0x33000000处存放Bootloader,复制长度根据编译生成的S- Boot.bin映像文件大小,向上取512字节的整数倍。 这里先来规划一下内存空间的分配。RAM的地址范围是从0x30000000到0x34000000共64MByte。把S-Boot和Kernel放在高地址处,S-Boot从 0x33000000开始,预留8MByte的空间,内核从0x33800000开始,可供使用的空间也是8MByte。因栈空间是向下生长的,我们在 S-Boot下面预留4096Byte的空闲区域,然后向下为栈空间,故栈指针SP初始化为 0x32FFF000。其实留不留空闲区域是无所谓的,这里只是为了把二者更明显地区分开。我们只设置SVC模式下的SP,不使用CPU的其它工作模式,所以也没必要设置其它模式下的栈指针。另外,程序中不使用动态内存分配,故而也不必分配堆空间。
void nand_init(void){ //时间参数设为:TACLS=0 TWRPH0=3 TWRPH1=0 NFCONF = 0x300; /* 使能NAND Flash控制器, 初始化ECC, 禁止片选 */ NFCONT = (1<<4)|(1<<1)|(1<<0); /* 复位NAND Flash */ NFCONT &= ~(1<<1); //发出片选信号 NFCMMD = 0xFF; //复位命令 s3c2440_wait_idle();//循环查询NFSTAT位0,直到它等于1 NFCONT |= 0x2; //取消片选信号} 读操作:读操作也是以页(512Byte)为单位进行的。在初始上电时,器件进入缺省的“读方式1模式”。在这一模式下,页读操作通过将0x 00 写入指令寄存器,接着写入3个地址(1个列地址和2个行地址)来启动。一旦页读指令被器件锁存,下面的页读操作就不需要再重复写入页读指令了。写入页读指令和地址后,处理器可以通过对信号线 R//B 的分析来判断页读操作是否完成。如果信号为低电平,表示器件正忙;如果信号为高电平,表示器件内部操作完成,要读取的数据被送入了数据寄存器。外部控制器可以再以50 ns 为周期的连续 /RE脉冲信号的控制下,从IO口依次读出数据。连续页读操作中,输出的数据是从指定的列地址开始,直到该页最后一个列地址的数据为止。 for(i=start_addr; i < (start_addr + size);) { NFCMMD = 0; //发出READ0命令 s3c2440_write_addr(i); //Write Address s3c2440_wait_idle(); //循环查询NFSTAT位0,直到它等于1 for(j=0; j < NAND_SECTOR_SIZE; j++, i++) { *buf = (unsigned char)NFDATA; buf++; } } 缺点:没有使用ECC校验和纠错;没有使用坏块检查;
#define ATAG_CORE 0x54410001#define ATAG_MEM 0x54410002#define ATAG_CMDLINE 0x54410009#define ATAG_NONE 0x00000000
这些都是TAG的类型,注意这些整数跟地址没有关系,只是一个用来识别标记类型的符号而已。
每个Tag都用结构体表示,包含TagHeader 头结构体以及随后的参数值数据结构。如 ATAG_CORE:
struct Atag {
struct TagHeader stHdr;
struct TagCore stCore;
};
其中包含两个结构体。第一个结构体TagHeader含两个整型变量,用以表示本结构体的长度、标记类型;nSzie赋值为头部TagHeader和数据TagCore的大小之和,注意是以字(即4字节)为单位;ulTag 就赋值为先前定义的宏ATAG_CORE。第二个结构体就是实际的数据了。
struct TagHeader {UINT32 nSize;UINT32 ulTag;};
struct TagCore {UINT32 ulFlags;UINT32 nPageSize;UINT32 ulRootDev;};
由于每个Tag都由一个TagHeader加一个数据部分组成,因此通常的做法是使用Struct和Union相结合来定义:
struct Atag { struct TagHeader stHdr; union { struct TagCore stCore; struct TagMem32 stMem; struct TagVideoText stVideoText; struct TagRamDisk stRamDisk; struct TagInitrd stInitRd; struct TagSerialnr stSerialNr; struct TagRevision stRevision; struct TagVideolfb stVideoLfb; struct TagCmdline stCmdLine; };};
其中涉及到的所有数据结构均可在 Linux 内核源码的include/asm/setup.h 头文件找到,我们把这些定义放在Bootloader的头文件atag.h中。启动参数标记列表以标记 ATAG_CORE 开始,以标记 ATAG_NONE 结束。每个标记由标识被传递参数的 tag_header 结构以及随后的参数值数据结构来组成。数据结构 tag 和 tag_header 定义在 Linux 内核源码的include/asm/setup.h 头文件中,在我们的S-Boot中对应的头文件为 atag.h。在嵌入式 Linux 系统中,通常需要由 Boot Loader 设置的常见启动参数有:ATAG_CORE、ATAG_MEM、ATAG_CMDLINE、ATAG_RAMDISK、ATAG_INITRD等。向内核传递参数的方法,先在内存中某个起始地址开始,连续存放多个Tag, 组成Tag列表。列表中的每个Tag包括头部TagHeader和数据结构体。按规定,第一个Tag必须是ATAG_CORE, 最末一个Tag必须是ATAG_NONE,而且中间必须包含至少一个ATAG_MEM。 注意的是末尾的ATAG_NONE只包括头部,没有数据内容。如图所示。
在编程时先定义好起始地址,然后用一个指针,每设置完毕一个Tag的内容就向后移动相应的长度,然后设置下一个Tag内容,以保证各个Tag的连续存放。
下面具体说明几个关键Tag的数据区域内容的设置。struct TagCore结构体已经在前面列出,它包含三个整型变量,ulFlags一般设为零,nPageSize表示分页内存管理中每一页的大小,一般为4096字节,ulRootDev是系统启动的设备号,设为零即可,因为通常在后面的命令行参数Cmdline中覆盖这个设置。Struct TagMem用来描述系统的物理内存地址空间,定义如下:
struct atag_mem { UINT32 nSize; /* size of the area */ UINT32 ulStart; /* physical start address */};
其中nSzie表示内存的总大小,ulStart为内存的起始物理地址,二者结合告诉内核系统可用的物理内存空间是哪些。Struct TagCmdline结构体的定义就更简单了,只是一个字符数组,初始长度为1,如下所示:
struct TagCmdline { char cCmdLine[1]; /* this is the minimum size */};
实际上命令行参数不可能只有一个字节,我们通常使用strcpy函数把命令行参数拷贝到cCmdLine地址处,在结尾附加一个字符串结束符’/0’,然后用strlen函数获得cCmdLine数组的实际长度(包括字符串结束符)。常见的命令行参数如:root=/dev/mtdblock2 init=/linuxrc console=ttySAC0,115200 mem=65536。我们知道的是,Bootloader以标记列表的形式向内核传递的参数,大概有10种不同类型的Tag,而命令行参数只是其中的一种。其它需要设置的Tag包括ATAG_RAMDISK、ATAG_INITRD等,此处不再详细介绍。
在我们的S-Boot中设置了ATAG_CORE,ATAG_MEM,ATAG_CMDLINE,ATAG_NONE 四项。其中CmdLine 使用的是:
const char *CmdLine = "root=/dev/nfs nfsroot=192.168.1.249:/home/hongwang/mkrootfs/rootfs ip=192.168.1.252:192.168.1.249:192.168.1.1:255.255.255.0:hwlee.net:eth0:off console=ttySAC0,115200 init=/linuxrc mem=65536K console=tty1 fbcon=rotate:2";
这里root=/dev/nfs表示使用NFS做根文件系统,注意并不真的存在/dev/nfs这个设备,它只是一个符号而已,告诉内核使用NFS而不是使用真正的设备做根文件系统。
nfsroot=[<server-ip>:]<root-dir>[,<nfs-options>]
nfsroot=192.168.1.249:/home/hongwang/mkrootfs/rootfs是NFS服务器地址及要挂载的目录。
ip=<client-ip>:<server-ip>:<gw-ip>:<netmask>:<hostname>:<device>:<autoconf>
ip=192.168.1.252:192.168.1.249:192.168.1.1:255.255.255.0:hwlee.net:eth0:off
只说明一下autoconf,这一个选项指明开发板使用的自动配置IP地址的方法,有时开发板可以设置成通过DHCP或者BOOTP等协议从服务器获取IP地址。off 或 none 表示不使用自动配置,使用指定的静态IP地址信息。
console=ttySAC0,115200 串口控制台
console=tty1 fbcon=rotate:2 液晶屏Framebuffer控制台,如果内核支持,可以在LCD屏幕上显示Linux内核启动过程,起点结束后在LCD屏幕上进入Shell控制台供用户操作。fbcon=rotate:2表示控制台旋转180度,若为1表示旋转90度,3旋转270度,0不旋转。
zImage 二进制文件包含两部分内容,起始部分是解压缩程序,后面是压缩的内核。解压缩程序是最先运行的,内核中文件是:arch/arm/boot /compressed/head.S,它负责把压缩的内核解压到0x30008000处。因此zImage可以下载到RAM任意位置处,由解压缩程序负责搬移到正确的运行地址。
所以 Bootloader启动Linux内核的方法就是直接跳转到内核的第一条指令处,也就是跳转到内存中存放内核映像的开始地址,内核映像具有自解压功能,会把自己释放到正确的运行地址。Tag列表怎样传给内核呢?使用的方法是把Tag列表的起始地址传给内核。首先,定义一个指向函数的指针:
typedef void (*LINUX_KERNEL_ENTRY)(int, int, UINT32);
LINUX_KERNEL_ENTRY pfExecKernel;
这样pfExecKernel就是一个函数指针,函数具有三个整型变量。然后,让pfExecKernel指向内核映像的起始地址处,这里使用强制类型转换把地址转换成函数指针类型:
pfExecKernel = (LINUX_KERNEL_ENTRY)pKernelStartAddr;
最后,以三个参数调用pfExecKernel函数:
pfExecKernel(0, MACH_ID, ATAG_BASE);
其中第一个参数默认为零,可以不必理会。第二个参数是机器ID号,不同的CPU有不同的号码与之对应,可以在内核源代码的linux/arch/arm/tools/mach-types 文件中查到,S3C2440 对应的MACH_ID 为362。第三个参数ATAG_BASE就是上文讲到的Tag列表的首地址。
这个函数调用的作用其实就是设置 r0=0,r1=机器ID,r2=TAG首地址,然后跳到arch/arm/boot/compressed/head.S文件中的第一条指令处。既然可以把TAG首地址传递给内核,那么TAG LIST就可以放在RAM中的任何位置了,只要不与其它有用内容冲突即可。但是事实却并不是想象的这样。实验发现,第三个参数传递进去的TAG首地址似乎没有起到作用,因为启动时总是找不到正确的启动参数。后来发现内核有个默认的TAG首地址0x30000100,它总是到0x30000100去寻找启动参数,而不理会我们传进来的第三个参数。所以,S-Boot中把TAG首地址就设置为0x30000100。
综上所述,包含最基本功能的S-Boot运行流程已经很清楚了。下图对此作了一个总结。