C/C++用移位实现乘除法运算,提高运行效率 用移位实现乘除法运算 a=a*4; b=b/4;
可以改为: a=a<<2; b=b>>2;
说明:
除2 = 右移1位 乘2 = 左移1位 除4 = 右移2位 乘4 = 左移2位 除8 = 右移3位 乘8 = 左移3位 ... ...
通常如果需要乘以或除以2的n次方,都可以用移位的方法代替。
大部分的C编译器,用移位的方法得到代码比调用乘除法子程序生成的代码效率高。
实际上,只要是乘以或除以一个整数,均可以用移位的方法得到结果,如:
a=a*9 分析a*9可以拆分成a*(8+1)即a*8+a*1, 因此可以改为: a=(a<<3)+a
a=a*7 分析a*7可以拆分成a*(8-1)即a*8-a*1, 因此可以改为: a=(a<<3)-a
关于除法读者可以类推, 此略.
// //问题:结构体中的字节是哪边是高位哪边是低位。 //结论:结构体从上往下依次为 从低位往高位排放 //如下代码: #include<iostream.h> union xxx{ unsigned char b; struct node { unsigned char a1:1;//最低位 unsigned char a2:1;//... unsigned char a3:1; unsigned char a4:1; unsigned char a5:1; unsigned char a6:1; unsigned char a7:1; unsigned char a8:1;//最高位 }wang; }; void main() { xxx pp; pp.b = 43; //0010 1011 cout << (int)pp.b << endl; cout << (int)pp.wang.a1 << " " << (int)pp.wang.a2 << " " << (int)pp.wang.a3 << " " << (int)pp.wang.a4 << " " << (int)pp.wang.a5 << " " << (int)pp.wang.a6 << " " << (int)pp.wang.a7 << " " << (int)pp.wang.a8 << " " ; cout << endl; } //输出: 43 1 1 0 1 0 1 0 0 end
//反转一个字节 和 判断32位整数二进制中1的个数 的算法 unsigned char reverse8( unsigned char c ) { c = ( c & 0x55 ) << 1 | ( c & 0xAA ) >> 1; c = ( c & 0x33 ) << 2 | ( c & 0xCC ) >> 2; c = ( c & 0x0F ) << 4 | ( c & 0xF0 ) >> 4; return c; }
unsigned long func(unsigned long x) { x = (x & 0x55555555UL) + ((x >> 1) & 0x55555555UL); x = (x & 0x33333333UL) + ((x >> 2) & 0x33333333UL); x = (x & 0x0f0f0f0fUL) + ((x >> 4) & 0x0f0f0f0fUL); x = (x & 0x00ff00ffUL) + ((x >> 8) & 0x00ff00ffUL); x = (x & 0x0000ffffUL) + ((x >> 16) & 0x0000ffffUL); return x; } // C语言的底层操作 C语言的底层操作 概述 C语言的内存模型基本上对应了现在von Neumann(冯·诺伊曼)计算机的实际存储模型,很好的达到了对机器
的映射,这是C/C++适合做底层开发的主要原因,另外,C语言适合做底层开发还有另外一个原因,那就是C语言对底
层操作做了很多的的支持,提供了很多比较底层的功能。 下面结合问题分别进行阐述。 问题:移位操作 在运用移位操作符时,有两个问题必须要清楚: (1)、在右移操作中,腾空位是填 0 还是符号位; (2)、什么数可以作移位的位数。 答案与分析: ">>"和"<<"是指将变量中的每一位向右或向左移动, 其通常形式为: 右移: 变量名>>移位的位数 左移: 变量名<<移位的位数 经过移位后, 一端的位被"挤掉",而另一端空出的位以0 填补,在C语言中的移位不是循环移动的。 (1) 第一个问题的答案很简单,但要根据不同的情况而定。如果被移位的是无符号数,则填 0 。如果是有符号
数,那么可能填 0 或符号位。如果你想解决右移操作中腾空位的填充问题,就把变量声明为无符号型,这样腾空位
会被置 0。 (2) 第二个问题的答案也很简单:如果移动 n 位,那么移位的位数要不小于 0 ,并且一定要小于 n 。这样就
不会在一次操作中把所有数据都移走。
比如,如果整型数据占 32 位,n 是一整型数据,则 n << 31 和 n << 0 都合法,而 n << 32 和 n << -1 都
不合法。
注意即使腾空位填符号位,有符号整数的右移也不相当与除以。为了证明这一点,我们可以想一下 -1 >> 1 不
可能为 0 。
问题:位段结构
struct RPR_ATD_TLV_HEADER { ULONG res1:6; ULONG type:10; ULONG res1:6; ULONG length:10; };
位段结构是一种特殊的结构, 在需按位访问一个字节或字的多个位时, 位结构比按位运算符更加方便。
位结构定义的一般形式为:
struct位结构名{ 数据类型 变量名: 整型常数; 数据类型 变量名: 整型常数; } 位结构变量;
其中: 整型常数必须是非负的整数, 范围是0~15, 表示二进制位的个数, 即表示有多少位。
变量名是选择项, 可以不命名, 这样规定是为了排列需要。
例如: 下面定义了一个位结构。
struct{ unsigned incon: 8; /*incon占用低字节的0~7共8位*/ unsigned txcolor: 4;/*txcolor占用高字节的0~3位共4位*/ unsigned bgcolor: 3;/*bgcolor占用高字节的4~6位共3位*/ unsigned blink: 1; /*blink占用高字节的第7位*/ }ch;
位结构成员的访问与结构成员的访问相同。
例如: 访问上例位结构中的bgcolor成员可写成:
ch.bgcolor
位结构成员可以与其它结构成员一起使用。按位访问与设置,方便&节省
例如:
struct info{ char name[8]; int age; struct addr address; float pay; unsigned state: 1; unsigned pay: 1; }workers;'
上例的结构定义了关于一个工从的信息。其中有两个位结构成员, 每个位结构成员只有一位, 因此只占一个字
节但保存了两个信息, 该字节中第一位表示工人的状态, 第二位表示工资是否已发放。由此可见使用位结构可以节
省存贮空间。
注意不要超过值限制
问题:字节对齐
我在使用VC编程的过程中,有一次调用DLL中定义的结构时,发觉结构都乱掉了,完全不能读取正确的值,后来
发现这是因为DLL和调用程序使用的字节对齐选项不同,那么我想问一下,字节对齐究竟是怎么一回事?
答案与分析:
关于字节对齐:
1、 当不同的结构使用不同的字节对齐定义时,可能导致它们之间交互变得很困难。
2、 在跨CPU进行通信时,可以使用字节对齐来保证唯一性,诸如通讯协议、写驱动程序时候寄存器的结构等。
三种对齐方式:
1、 自然对齐方式(Natural Alignment):与该数据类型的大小相等。
2、 指定对齐方式 :
#pragma pack(8) //指定Align为 8; #pragma pack() //恢复到原先值
3、 实际对齐方式:
Actual Align = min ( Order Align, Natual Align )
对于复杂数据类型(比如结构等):实际对齐方式是其成员最大的实际对齐方式:
Actual Align = max( Actual align1,2,3,…)
编译器的填充规律:
1、 成员为成员Actual Align的整数倍,在前面加Padding。
成员Actual Align = min( 结构Actual Align,设定对齐方式)
2、 结构为结构Actual Align的整数倍,在后面加Padding.
例子分析:
#pragma pack(8) //指定Align为 8 struct STest1 { char ch1; long lo1; char ch2; } test1; #pragma pack()
现在
Align of STest1 = 4 , sizeof STest1 = 12 ( 4 * 3 )
test1在内存中的排列如下( FF 为 padding ):
00 -- -- -- 04 -- -- -- 08 -- -- -- 12 -- -- -- 01 FF FF FF 01 01 01 01 01 FF FF FF ch1 -- lo1 -- ch2 #pragma pack(2) //指定Align为 2 struct STest2 { char ch3; STest1 test; } test2; #pragma pack()
现在 Align of STest1 = 2, Align of STest2 = 2 , sizeof STest2 = 14 ( 7 * 2 )
test2在内存中的排列如下:
00 -- -- -- 04 -- -- -- 08 -- -- -- 12 -- -- -- 02 FF 01 FF FF FF 01 01 01 01 01 FF FF FF ch3 ch1 -- lo1 -- ch2
注意事项:
1、 这样一来,编译器无法为特定平台做优化,如果效率非常重要,就尽量不要使用#pragma pack,如果必须
使用,也最好仅在需要的地方进行设置。
2、需要加pack的地方一定要在定义结构的头文件中加,不要依赖命令行选项,因为如果很多人使用该头文件,
并不是每个人都知道应该pack。这特别表现在为别人开发库文件时,如果一个库函数使用了struct作为其参数,当
调用者与库文件开发者使用不同的pack时,就会造成错误,而且该类错误很不好查。
3、 在VC及BC提供的头文件中,除了能正好对齐在四字节上的结构外,都加了pack,否则我们编的Windows程序
哪一个也不会正常运行。
4、 在 #pragma pack(n) 后一定不要include其他头文件,若包含的头文件中改变了align值,将产生非预期结
果。
5、 不要多人同时定义一个数据结构。这样可以保证一致的pack值。
问题:按位运算符
C语言和其它高级语言不同的是它完全支持按位运算符。这与汇编语言的位操作有些相似。 C中按位运算符列出
如下:
━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 操作符 作用 ──────────────────────────── & 位逻辑与 | 位逻辑或 ^ 位逻辑异或 - 位逻辑反 >> 右移 << 左移 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━
注意:
1、 按位运算是对字节或字中的实际位进行检测、设置或移位, 它只适用于字符型和整数型变量以及它们的变
体, 对其它数据类型不适用。
2、 关系运算和逻辑运算表达式的结果只能是1或0。 而按位运算的结果可以取0或1以外的值。要注意区别按位
运算符和逻辑运算符的不同, 例如, 若x=7, 则x&&8 的值为真(两个非零值相与仍为非零), 而x&8的值为0。
3、 | 与 ||,&与&&,~与! 的关系
&、| 和 ~ 操作符把它们的操作数当作一个为序列,按位单独进行操作。比如:10 & 12 = 8,这是因为"&"操
作符把 10 和 12 当作二进制描述 1010 和 1100 ,所以只有当两个操作数的相同位同时为 1 时,产生的结果中相
应位才为 1 。同理,10 | 12 = 14 ( 1110 ),通过补码运算,~10 = -11 ( 11...110101 )。<以多少为一个位序
列>
&&、|| 和!操作符把它们的操作数当作"真"或"假",并且用 0 代表"假",任何非 0 值被认为是"真"。它们返
回 1 代表"真",0 代表"假",对于"&&"和"||"操作符,如果左侧的操作数的值就可以决定表达式的值,它们根本就
不去计算右侧的操作数。所以,!10 是 0 ,因为 10 非 0 ;10 && 12 是 1 ,因为 10 和 12 均非 0 ;10 || 12
也是 1 ,因为 10 非 0 。并且,在最后一个表达式中,12 根本就没被计算,在表达式 10 || f( ) 中也是如此。