Linux 进程内存模型

    技术2022-05-20  35

    Linux 进程内存模型 (1)

    下图是一个简易的内存模型示意图。其中某些段 (Segment) 是从可执行文件加载的,有关 ELF Section 和 Segment 的映射关系,我们可以从 ELF Program Headers 中获取相关信息。 $ readelf -l hello Elf file type is EXEC (Executable file) Entry point 0x8048410 There are 8 program headers, starting at offset 52 Program Headers: Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align PHDR 0x000034 0x08048034 0x08048034 0x00100 0x00100 R E 0x4 INTERP 0x000134 0x08048134 0x08048134 0x00013 0x00013 R 0x1 LOAD 0x000000 0x08048000 0x08048000 0x0064c 0x0064c R E 0x1000 LOAD 0x000f0c 0x08049f0c 0x08049f0c 0x0011c 0x00128 RW 0x1000 DYNAMIC 0x000f20 0x08049f20 0x08049f20 0x000d0 0x000d0 RW 0x4 NOTE 0x000148 0x08048148 0x08048148 0x00044 0x00044 R 0x4 GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x4 GNU_RELRO 0x000f0c 0x08049f0c 0x08049f0c 0x000f4 0x000f4 R 0x1 Section to Segment mapping: Segment Sections... 00 01 .interp 02 ... .init .plt .text .fini .rodata 03 ... .data .bss 04 .dynamic 05 .note.ABI-tag .note.gnu.build-id 06 07 .ctors .dtors .jcr .dynamic .got 对照示意图,我们可以看到 .text, .rodata, .data, .bss 被加载到 0x08048000 之后,也就是序号 02, 03 两个 LOAD Segemtn 段中。ELF Section 信息中的 Virtual Address 也是一个参考。 $ readelf -S hello There are 38 section headers, starting at offset 0x1a10: Section Headers: [Nr] Name Type Addr Off Size ES Flg Lk Inf Al ... ... [14] .text PROGBITS 08048410 000410 0001ec 00 AX 0 0 16 [16] .rodata PROGBITS 08048618 000618 000030 00 A 0 0 4 [24] .data PROGBITS 0804a018 001018 000010 00 WA 0 0 4 [25] .bss NOBITS 0804a028 001028 00000c 00 WA 0 0 4 [35] .shstrtab STRTAB 00000000 0018b8 000156 00 0 0 1 [36] .symtab SYMTAB 00000000 002000 000540 10 37 56 4 [37] .strtab STRTAB 00000000 002540 000263 00 0 0 1 Key to Flags: W (write), A (alloc), X (execute), M (merge), S (strings) I (info), L (link order), G (group), x (unknown) O (extra OS processing required) o (OS specific), p (processor specific) 注意不是所有的 Section 都会被加载到进程内存空间。 查看进程运行时内存信息: (1) pmap $ ps aux | grep hello | grep -v grep yuhen 6649 0.0 1.6 39692 8404 pts/0 Sl+ Dec10 0:13 vim hello.c yuhen 12787 0.0 0.0 1664 396 pts/1 S+ 08:24 0:00 ./hello $ pmap -x 12787 12787: ./hello Address Kbytes RSS Anon Locked Mode Mapping 00110000 1272 - - - r-x-- libc-2.10.1.so 0024e000 8 - - - r---- libc-2.10.1.so 00250000 4 - - - rw--- libc-2.10.1.so 00251000 12 - - - rw--- [ anon ] 002b2000 108 - - - r-x-- ld-2.10.1.so 002cd000 4 - - - r---- ld-2.10.1.so 002ce000 4 - - - rw--- ld-2.10.1.so 00c4d000 4 - - - r-x-- [ anon ] 08048000 4 - - - r-x-- hello 08049000 4 - - - r---- hello 0804a000 4 - - - rw--- hello 09f89000 132 - - - rw--- [ anon ] b7848000 4 - - - rw--- [ anon ] b7855000 16 - - - rw--- [ anon ] bfc40000 84 - - - rw--- [ stack ] -------- ------- ------- ------- ------- total kB 1664 - - - (2) maps $ cat /proc/12787/maps 00110000-0024e000 r-xp 00000000 08:01 5231 /lib/tls/i686/cmov/libc-2.10.1.so 0024e000-00250000 r--p 0013e000 08:01 5231 /lib/tls/i686/cmov/libc-2.10.1.so 00250000-00251000 rw-p 00140000 08:01 5231 /lib/tls/i686/cmov/libc-2.10.1.so 00251000-00254000 rw-p 00000000 00:00 0 002b2000-002cd000 r-xp 00000000 08:01 1809 /lib/ld-2.10.1.so 002cd000-002ce000 r--p 0001a000 08:01 1809 /lib/ld-2.10.1.so 002ce000-002cf000 rw-p 0001b000 08:01 1809 /lib/ld-2.10.1.so 00c4d000-00c4e000 r-xp 00000000 00:00 0 [vdso] 08048000-08049000 r-xp 00000000 08:01 135411 /home/yuhen/Projects/Learn.C/hello 08049000-0804a000 r--p 00000000 08:01 135411 /home/yuhen/Projects/Learn.C/hello 0804a000-0804b000 rw-p 00001000 08:01 135411 /home/yuhen/Projects/Learn.C/hello 09f89000-09faa000 rw-p 00000000 00:00 0 [heap] b7848000-b7849000 rw-p 00000000 00:00 0 b7855000-b7859000 rw-p 00000000 00:00 0 bfc40000-bfc55000 rw-p 00000000 00:00 0 [stack] (3) gdb $ gdb --pid=12787 (gdb) info proc mappings process 12619 cmdline = '/home/yuhen/Projects/Learn.C/hello' cwd = '/home/yuhen/Projects/Learn.C' exe = '/home/yuhen/Projects/Learn.C/hello' Mapped address spaces: Start Addr End Addr Size Offset objfile ... ... 0x8048000 0x8049000 0x1000 0 /home/yuhen/Projects/Learn.C/hello 0x8049000 0x804a000 0x1000 0 /home/yuhen/Projects/Learn.C/hello 0x804a000 0x804b000 0x1000 0x1000 /home/yuhen/Projects/Learn.C/hello 0x9f89000 0x9faa000 0x21000 0 [heap] 0xb7848000 0xb7849000 0x1000 0 0xb7855000 0xb7859000 0x4000 0 0xbfc40000 0xbfc55000 0x15000 0 [stack 接下来我们分析不同生存周期变量在进程空间的位置。#include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include <string.h> int x = 0x1234; char *s; int test() { static int a = 0x4567; static int b; return ++a; } int main(int argc, char* argv[]) { int i = test() + x; s = "Hello, World!"; char* p = malloc(10); return EXIT_SUCCESS; } 在分析 ELF 文件结构时我们就已经知道全局变量和静态局部变量在编译期就决定了其内存地址。 $ readelf -s hello Symbol table '.symtab' contains 79 entries: Num: Value Size Type Bind Vis Ndx Name ... ... 50: 0804a018 4 OBJECT LOCAL DEFAULT 24 a.2344 51: 0804a024 4 OBJECT LOCAL DEFAULT 25 b.2345 57: 0804a028 4 OBJECT GLOBAL DEFAULT 25 s 65: 0804a014 4 OBJECT GLOBAL DEFAULT 24 x ... ... $ readelf -S hello There are 38 section headers, starting at offset 0x1a10: Section Headers: [Nr] Name Type Addr Off Size ES Flg Lk Inf Al ... ... [16] .rodata PROGBITS 080484f8 0004f8 000016 00 A 0 0 4 [24] .data PROGBITS 0804a00c 00100c 000010 00 WA 0 0 4 [25] .bss NOBITS 0804a01c 00101c 000010 00 WA 0 0 4 Key to Flags: W (write), A (alloc), X (execute), M (merge), S (strings) I (info), L (link order), G (group), x (unknown) O (extra OS processing required) o (OS specific), p (processor specific) 通过对比相关段,我们可确定已初始化的全局和静态变量被分配在 .data 中,而未初始化全局和静态变量则分配在 .bss。 .data 0804a00c ~ 0804a01b : x(0804a014), a(0804a018), .bss 0804a01c ~ 0804a02b : b(0804a024), s(0804a028) 而代码中的字符串 "Hello, World!" 被分配在 .rodata 中。 $ readelf -p .rodata hello String dump of section '.rodata': [ 8] Hello, World! $ readelf -x .rodata hello Hex dump of section '.rodata': 0x080484f8 03000000 01000200 48656c6c 6f2c2057 ........Hello, W 0x08048508 6f726c64 2100 orld!. 可以用反汇编代码验证一下。 $ objdump -dS -M intel hello | less int x = 0x1234; char *s; int test() { 80483e4: push ebp 80483e5: mov ebp,esp static int a = 0x4567; static int b; return ++a; 80483e7: mov eax,ds:0x804a018 ; 静态变量 a 80483ec: add eax,0x1 ; 计算 (eax) = (eax) + 1 80483ef: mov ds:0x804a018,eax ; 将结果存回 a 80483f4: mov eax,ds:0x804a018 } ... ... int main(int argc, char* argv[]) { int i = test() + x; 8048404: call 80483e4 <test> ; test() 返回值被存入 eax 8048409: mov edx,DWORD PTR ds:0x804a014 ; 将全局变量 x 值放入 edx 804840f: add eax,edx ; 计算 (eax) = test() + x 8048411: mov DWORD PTR [esp+0x1c],eax ; 局部变量 i = (eax), 显然 i 在栈分配 s = "Hello, World!"; 8048415: mov DWORD PTR ds:0x804a028,0x8048500 ; 将 .rodata "Hello..." 地址复制给 s ... ... char* p = malloc(10); 804841f: mov DWORD PTR [esp],0xa 8048426: call 804831c <malloc@plt> 804842b: mov DWORD PTR [esp+0x18],eax return EXIT_SUCCESS; 804842f: mov eax,0x0 } 也可以用 gdb 查看运行期分配状态。 (gdb) p &i ; main() 局部变量 i 地址 $1 = (int *) 0xbffff74c (gdb) p p ; malloc 返回空间指针 p $2 = 0x804b008 "" (gdb) info proc mappings Mapped address spaces: Start Addr End Addr Size Offset objfile 0x804b000 0x806c000 0x21000 0 [heap] 0xbffeb000 0xc0000000 0x15000 0 [stack] 很显然,局部变量 i 分配在 Stack,而 malloc p 则是在 Heap 上分配。

    最新回复(0)