从Linux 2.6起引入了一套新的驱动管理和注册机制:Platform_device和Platform_driver。 Linux中大部分的设备驱动,都可以使用这套机制, 设备用Platform_device表示,驱动用Platform_driver进行注册。 Linux platform driver机制和传统的device driver 机制(通过driver_register函数进行注册)相比,一个十分明显的优势在于platform机制将设备本身的资源注册进内核,由内核统一管理,在驱动程序中使用这些资源时通过platform device提供的标准接口进行申请并使用。这样提高了驱动和资源管理的独立性,并且拥有较好的可移植性和安全性(这些标准接口是安全的)。 Platform机制的本身使用并不复杂,由两部分组成:platform_device和platfrom_driver。 通过Platform机制开发发底层驱动的大致流程为: 定义 platform_device à 注册 platform_device à定义 platform_driver à注册 platform_driver。 首先要确认的就是设备的资源信息,例如设备的地址,中断号等。 在2.6内核中platform设备用结构体platform_device来描述,该结构体定义在kernel/include/linux/platform_device.h中,struct platform_device { const char * name; u32 id; struct device dev; u32 num_resources; struct resource * resource; }; 该结构一个重要的元素是resource,该元素存入了最为重要的设备资源信息,定义在kernel/include/linux/ioport.h中, struct resource { const char *name; unsigned long start, end; unsigned long flags; struct resource *parent, *sibling, *child; }; 下面举s3c2410平台的i2c驱动作为例子来说明:
/* arch/arm/mach-s3c2410/devs.c *//* I2C */static struct resource s3c_i2c_resource[] = { [0] = { .start = S3C24XX_PA_IIC, .end = S3C24XX_PA_IIC + S3C24XX_SZ_IIC - 1, .flags = IORESOURCE_MEM, }, [1] = { .start = IRQ_IIC, //S3C2410_IRQ(27) .end = IRQ_IIC, .flags = IORESOURCE_IRQ, }}; 这里定义了两组resource,它描述了一个I2C设备的资源,第1组描述了这个I2C设备所占用的总线地址范围,IORESOURCE_MEM表示第1组描述的是内存类型的资源信息,第2组描述了这个I2C设备的中断号,IORESOURCE_IRQ表示第2组描述的是中断资源信息。设备驱动会根据flags来获取相应的资源信息。 有了resource信息,就可以定义platform_device了:struct platform_device s3c_device_i2c = { .name = "s3c2410-i2c", .id = -1, .num_resources = ARRAY_SIZE(s3c_i2c_resource), .resource = s3c_i2c_resource,};定义好了platform_device结构体后就可以调用函数platform_add_devices向系统中添加该设备了,之后可以调用platform_driver_register()进行设备注册。要注意的是,这里的platform_device设备的注册过程必须在相应设备驱动加载之前被调用,即执行platform_driver_register之前,原因是因为驱动注册时需要匹配内核中所以已注册的设备名。 s3c2410-i2c的platform_device是在系统启动时,在cpu.c里的s3c_arch_init()函数里进行注册的,这个函数申明为arch_initcall(s3c_arch_init);会在系统初始化阶段被调用。 arch_initcall的优先级高于module_init。所以会在Platform驱动注册之前调用。(详细参考include/linux/init.h) s3c_arch_init函数如下:
/* arch/arm/mach-3sc2410/cpu.c */static int __init s3c_arch_init(void){ int ret; ……/* 这里board指针指向在mach-smdk2410.c里的定义的smdk2410_board,里面包含了预先定义的I2C Platform_device等. */ if (board != NULL) { struct platform_device **ptr = board->devices; int i;
for (i = 0; i < board->devices_count; i++, ptr++) { ret = platform_device_register(*ptr); //在这里进行注册
if (ret) { printk(KERN_ERR "s3c24xx: failed to add board device %s (%d) @%p/n", (*ptr)->name, ret, *ptr); } } /* mask any error, we may not need all these board * devices */ ret = 0; } return ret;}
同时被注册还有很多其他平台的platform_device,详细查看arch/arm/mach-s3c2410/mach-smdk2410.c里的smdk2410_devices结构体。 驱动程序需要实现结构体struct platform_driver,参考drivers/i2c/busses
/* device driver for platform bus bits */
static struct platform_driver s3c2410_i2c_driver = { .probe = s3c24xx_i2c_probe, .remove = s3c24xx_i2c_remove, .resume = s3c24xx_i2c_resume, .driver = { .owner = THIS_MODULE, .name = "s3c2410-i2c", },};
在驱动初始化函数中调用函数platform_driver_register()注册platform_driver,需要注意的是s3c_device_i2c结构中name元素和s3c2410_i2c_driver结构中driver.name必须是相同的,这样在platform_driver_register()注册时会对所有已注册的所有platform_device中的name和当前注册的platform_driver的driver.name进行比较,只有找到相同的名称的platfomr_device才能注册成功,当注册成功时会调用platform_driver结构元素probe函数指针,这里就是s3c24xx_i2c_probe,当进入probe函数后,需要获取设备的资源信息,常用获取资源的函数主要是:struct resource * platform_get_resource(struct platform_device *dev, unsigned int type, unsigned int num); 根据参数type所指定类型,例如IORESOURCE_MEM,来获取指定的资源。 struct int platform_get_irq(struct platform_device *dev, unsigned int num);//获取资源中的中断号。 下面举s3c24xx_i2c_probe函数分析,看看这些接口是怎么用的。 前面已经讲了,s3c2410_i2c_driver注册成功后会调用s3c24xx_i2c_probe执行,下面看代码:
/* drivers/i2c/busses/i2c-s3c2410.c */
static int s3c24xx_i2c_probe(struct platform_device *pdev){ struct s3c24xx_i2c *i2c = &s3c24xx_i2c; struct resource *res; int ret; /* find the clock and enable it */ i2c->dev = &pdev->dev; i2c->clk = clk_get(&pdev->dev, "i2c"); if (IS_ERR(i2c->clk)) { dev_err(&pdev->dev, "cannot get clock/n"); ret = -ENOENT; goto out; }
dev_dbg(&pdev->dev, "clock source %p/n", i2c->clk); clk_enable(i2c->clk);
/* map the registers */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); /* 获取设备的IO资源地址 */ if (res == NULL) { dev_err(&pdev->dev, "cannot find IO resource/n"); ret = -ENOENT; goto out; } i2c->ioarea = request_mem_region(res->start, (res->end-res->start)+1, pdev->name); /* 申请这块IO Region */ if (i2c->ioarea == NULL) { dev_err(&pdev->dev, "cannot request IO/n"); ret = -ENXIO; goto out; } i2c->regs = ioremap(res->start, (res->end-res->start)+1); /* 映射至内核虚拟空间 */ if (i2c->regs == NULL) { dev_err(&pdev->dev, "cannot map IO/n"); ret = -ENXIO; goto out; } dev_dbg(&pdev->dev, "registers %p (%p, %p)/n", i2c->regs, i2c->ioarea, res); /* setup info block for the i2c core */ i2c->adap.algo_data = i2c; i2c->adap.dev.parent = &pdev->dev; /* initialise the i2c controller */ ret = s3c24xx_i2c_init(i2c); if (ret != 0) goto out;
/* find the IRQ for this unit (note, this relies on the init call to ensure no current IRQs pending */ res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); /* 获取设备IRQ中断号 */
if (res == NULL) { dev_err(&pdev->dev, "cannot find IRQ/n"); ret = -ENOENT; goto out; } ret = request_irq(res->start, s3c24xx_i2c_irq, IRQF_DISABLED, /* 申请IRQ */ pdev->name, i2c); ……
return ret; }
小思考: 那什么情况可以使用platform driver机制编写驱动呢? 我的理解是只要和内核本身运行依赖性不大的外围设备(换句话说只要不在内核运行所需的一个最小系统之内的设备),相对独立的,拥有各自独自的资源(addresses and IRQs),都可以用platform_driver实现。如:lcd,usb,uart等,都可以用platfrom_driver写,而timer,irq等最小系统之内的设备则最好不用platfrom_driver机制,实际上内核实现也是这样的。 参考资料: linux-2.6.24/Documentation/driver-model/platform.txt《platform _device和platform_driver注册过程》 platform_device_register()注册过程------------------------------------
/* arch/arm/mach-s3c2410/mach-smdk2410.c */ struct platform_device s3c_device_i2c = { .name = "s3c2410-i2c", .id = -1, .num_resources = ARRAY_SIZE(s3c_i2c_resource), .resource = s3c_i2c_resource, }; /* * platform_device_register - add a platform-level device * @pdev: platform device we're adding * */ int platform_device_register(struct platform_device * pdev) { device_initialize(&pdev->dev); //初始化设备结构 return platform_device_add(pdev); //添加一个片上的设备到设备层 } /** * platform_device_add - add a platform device to device hierarchy * @pdev: platform device we're adding * * This is part 2 of platform_device_register(), though may be called * separately _iff_ pdev was allocated by platform_device_alloc(). */ int platform_device_add(struct platform_device *pdev) { int i, ret = 0; if (!pdev) return -EINVAL; if (!pdev->dev.parent) pdev->dev.parent = &platform_bus; pdev->dev.bus = &platform_bus_type; if (pdev->id != -1) snprintf(pdev->dev.bus_id, BUS_ID_SIZE, "%s.%d", pdev->name, pdev->id); /* 若支持同类多个设备,则用pdev->name和pdev->id在总线上标识该设备 */ else strlcpy(pdev->dev.bus_id, pdev->name, BUS_ID_SIZE); /* 否则,用pdev->name(如"s3c2410-i2c")在总线上标识该设备*/ for (i = 0; i < pdev->num_resources; i++) { /* 遍历资源数,并为各自在总线地址空间请求分配 */ struct resource *p, *r = &pdev->resource[i]; if (r->name == NULL) r->name = pdev->dev.bus_id; p = r->parent; if (!p) { if (r->flags & IORESOURCE_MEM) p = &iomem_resource; /* 作为IO内存资源分配 */ else if (r->flags & IORESOURCE_IO) p = &ioport_resource; /* 作为IO Port资源分配 */ } if (p && insert_resource(p, r)) { /* 将新的resource插入内核resource tree */ printk(KERN_ERR "%s: failed to claim resource %d/n",pdev->dev.bus_id, i); ret = -EBUSY; goto failed; } } pr_debug("Registering platform device '%s'. Parent at %s/n", pdev->dev.bus_id, pdev->dev.parent->bus_id); ret = device_add(&pdev->dev); if (ret == 0) return ret; failed: while (--i >= 0) if (pdev->resource[i].flags & (IORESOURCE_MEM|IORESOURCE_IO)) release_resource(&pdev->resource[i]); return ret; } 这里发现,添加device到内核最终还是调用的device_add函数。Platform_device_add和device_add最主要的区别是多了一步insert_resource(p, r)即将platform资源(resource)添加进内核,由内核统一管理。 platform_driver_register()注册过程 --------------------------------------static struct platform_driver s3c2410_i2c_driver = { .probe = s3c24xx_i2c_probe, .remove = s3c24xx_i2c_remove, .resume = s3c24xx_i2c_resume, .driver = { .owner = THIS_MODULE, .name = "s3c2410-i2c", }, }; platform_driver_register(&s3c2410fb_driver)-----> driver_register(&drv->driver)-----> bus_add_driver(drv)-----> driver_attach(drv)-----> bus_for_each_dev(drv->bus, NULL, drv, __driver_attach)-----> __driver_attach(struct device * dev, void * data)-----> driver_probe_device(drv, dev)-----> really_probe(dev, drv)-----> 在really_probe()中:为设备指派管理该设备的驱动:dev->driver = drv, 调用probe()函数初始化设备:drv->probe(dev)注:Platform_device和Platform_driver的使用请参考这篇文章:
struct resource * platform_get_resource(struct platform_device *dev, unsigned int type, unsigned int num);根据参数type所指定类型,例如IORESOURCE_MEM,来获取指定的资源。struct int platform_get_irq(struct platform_device *dev, unsigned int num);获取资源中的中断号。struct resource * platform_get_resource_byname(struct platform_device *dev, unsigned int type, char *name);根据参数name所指定的名称,来获取指定的资源。int platform_get_irq_byname(struct platform_device *dev, char *name);根据参数name所指定的名称,来获取资源中的中断号。
本文来自博客,转载请标明出处:http://blog.csdn.net/linweig/archive/2010/03/03/5341211.aspx