最大类间方差法(OTSU)

    技术2022-05-20  80

    资料转自: http://zhengliqiang.spaces.live.com/Blog/cns!C442B714C18F258E!284.entry 这里讲得比较清楚,而且代码写了注释,感谢作者!   最大类间方差法(otsu)的原理:        阈值将原图象分成前景,背景两个图象。        前景:用n1, csum,     m1来表示在当前阈值下的前景的点数,质量矩,平均灰度        后景:用n2, sum-csum, m2来表示在当前阈值下的背景的点数,质量矩,平均灰度        当取最佳阈值时,背景应该与前景差别最大,关键在于如何选择衡量差别的标准        而在otsu算法中这个衡量差别的标准就是最大类间方差(英文简称otsu,这也就是这个算法名字的来源)        在本程序中类间方差用sb表示,最大类间方差用fmax        关于最大类间方差法(otsu)的性能:        类间方差法对噪音和目标大小十分敏感,它仅对类间方差为单峰的图像产生较好的分割效果。        当目标与背景的大小比例悬殊时,类间方差准则函数可能呈现双峰或多峰,此时效果不好,但是类间方差法是用时最少的。        最大最大类间方差法(otsu)的公式推导:        记t为前景与背景的分割阈值,前景点数占图像比例为w0, 平均灰度为u0;背景点数占图像比例为w1,平均灰度为u1。        则图像的总平均灰度为:u=w0*u0+w1*u1。        前景和背景图象的方差:g=w0*(u0-u)*(u0-u)+w1*(u1-u)*(u1-u)=w0*w1*(u0-u1)*(u0-u1),此公式为方差公式,可参照概率论课本        上面的g的公式也就是下面程序中的sb的表达式        当方差g最大时,可以认为此时前景和背景差异最大,也就是此时的灰度是最佳阈值   unsafe public int GetThreshValue(Bitmap image)         {             BitmapData bd = image.LockBits(new Rectangle(0, 0, image.Width, image.Height), ImageLockMode.WriteOnly, image.PixelFormat);             byte* pt = (byte*)bd.Scan0;             int[] pixelNum = new int[256];            //图象直方图,共256个点            byte color;             byte* pline;             int n, n1, n2;             int total;                               //total为总和,累计值            double m1, m2, sum, csum, fmax, sb;      //sb为类间方差,fmax存储最大方差值             int k, t, q;             int threshValue = 1;                       // 阈值            int step = 1;             switch (image.PixelFormat)             {                 case PixelFormat.Format24bppRgb:                     step = 3;                     break;                 case PixelFormat.Format32bppArgb:                     step = 4;                     break;                 case PixelFormat.Format8bppIndexed:                     step = 1;                     break;             }              //生成直方图             for (int i = 0; i < image.Height; i++)             {                 pline = pt + i * bd.Stride;                 for (int j = 0; j < image.Width; j++)                 {                     color = *(pline + j * step);    //返回各个点的颜色,以RGB表示                    pixelNum[color]++;             //相应的直方图加1                }             }              //直方图平滑化            for (k = 0; k <= 255; k++)             {                 total = 0;                 for (t = -2; t <= 2; t++)               //与附近2个灰度做平滑化,t值应取较小的值                 {                     q = k + t;                     if (q < 0 )                     //越界处理                         q = 0;                     if (q > 255)                                            q = 255;                     total = total + pixelNum[q];     //total为总和,累计值                }                 pixelNum[k] = (int)((float)total / 5.0 + 0.5);     //平滑化,左边2个+中间1个+右边2个灰度,共5个,所以总和除以5,后面加0.5是用修正值            }              //求阈值            sum = csum = 0.0;             n = 0;              //计算总的图象的点数和质量矩,为后面的计算做准备            for (k = 0; k <= 255; k++)             {                 sum += (double)k * (double)pixelNum[k];      //x*f(x)质量矩,也就是每个灰度的值乘以其点数(归一化后为概率),sum为其总和                n += pixelNum[k];                        //n为图象总的点数,归一化后就是累积概率            }                          fmax = -1.0;                           //类间方差sb不可能为负,所以fmax初始值为-1不影响计算的进行            n1 = 0;             for (k = 0; k < 255; k++)                   //对每个灰度(从0到255)计算一次分割后的类间方差sb            {                 n1 += pixelNum[k];                 //n1为在当前阈值遍前景图象的点数                if (n1 == 0) { continue; }             //没有分出前景后景                 n2 = n - n1;                         //n2为背景图象的点数                if (n2 == 0) { break; }                //n2为0表示全部都是后景图象,与n1=0情况类似,之后的遍历不可能使前景点数增加,所以此时可以退出循环                csum += (double)k * pixelNum[k];     //前景的“灰度的值*其点数”的总和                m1 = csum / n1;                      //m1为前景的平均灰度                m2 = (sum - csum) / n2;                //m2为背景的平均灰度                sb = (double)n1 * (double)n2 * (m1 - m2) * (m1 - m2);    //sb为类间方差                if (sb > fmax)                   //如果算出的类间方差大于前一次算出的类间方差                 {                     fmax = sb;                     //fmax始终为最大类间方差(otsu)                     threshValue = k;               //取最大类间方差时对应的灰度的k就是最佳阈值                }             }             image.UnlockBits(bd);             image.Dispose();             return threshValue;         }


    最新回复(0)