详解Linux2.6内核中基于platform机制的驱动模型

    技术2022-06-22  84

    【摘要】本文以Linux 2.6.25 内核为例,分析了基于platform总线的驱动模型。首先介绍了Platform总线的基本概念,接着介绍了platform device和platform driver的定义和加载过程,分析了其与基类device 和driver的派生关系及在此过程中面向对象的设计思想。最后以ARM S3C2440中I2C控制器为例介绍了基于platform总线的驱动开发流程。

    【关键字】platform_bus, platform_device, resource , platform_driver, file_operations

    目录

    1    何谓platform bus?    2 2    device和platform_device    3 3    device_register和platform_device_register    5 4    device_driver和platform driver    8 5    driver_register 和platform_driver_register    10 6    bus、device及driver三者之间的关系    17 7    哪些适用于plarform驱动?    18 8    基于platform总线的驱动开发流程    18       8.1    初始化platform_bus    19       8.2    定义platform_device    22       8.3    注册platform_device    22       8.4    定义platform_driver    28      8.5    注册platform_driver    29      8.6    操作设备    32

     

     

    1    何谓platform bus?         Linux系统中许多部分对设备是如何链接的并不感兴趣,但是他们需要知道哪些类型的设备是可以使用的。设备模型提供了一种机制来对设备进行分类,在更高的功能层面上描述这些设备,并使得这些设备对用户空间可见。因此从2.6内核开始引入了设备模型。

            总线是处理器和一个或多个设备之间的通道,在设备模型中, 所有的设备都通过总线相连。总线可以相互插入。设备模型展示了总线和它们所控制的设备之间的实际连接。

            Platform总线是2.6 kernel中最近引入的一种虚拟总线,主要用来管理CPU的片上资源,具有更好的移植性,因此在2.6 kernel中,很多驱动都用platform改写了。

    platform_bus_type的定义如下: #linux+v2.6.25/drivers/base/platform.c#L609 609struct bus_type platform_bus_type = {  610        .name           = "platform",  611        .dev_attrs      = platform_dev_attrs,  612        .match          = platform_match,  613        .uevent         = platform_uevent,  614        .suspend        = platform_suspend,  615        .suspend_late   = platform_suspend_late,  616        .resume_early   = platform_resume_early,  617        .resume         = platform_resume,  618};  619EXPORT_SYMBOL_GPL(platform_bus_type);

    #linux+v2.6.25/include/linux/device.h#L55   55struct bus_type {   56        const char              *name;   57        struct bus_attribute    *bus_attrs;   58        struct device_attribute *dev_attrs;   59        struct driver_attribute *drv_attrs;   60   61        int (*match)(struct device *dev, struct device_driver *drv);   62        int (*uevent)(struct device *dev, struct kobj_uevent_env *env);   63        int (*probe)(struct device *dev);   64        int (*remove)(struct device *dev);   65        void (*shutdown)(struct device *dev);   66   67        int (*suspend)(struct device *dev, pm_message_t state);   68        int (*suspend_late)(struct device *dev, pm_message_t state);   69        int (*resume_early)(struct device *dev);   70        int (*resume)(struct device *dev);   71   72        struct bus_type_private *p;   73};

    总线名称是"platform",其只是bus_type的一种,定义了总线的属性,同时platform_bus_type还有相关操作方法,如挂起、中止、匹配及hotplug事件等。

    总线bus是联系driver和device的中间枢纽。Device通过所属的bus找到driver,由match操作方法进行匹配。

      Bus、driver及devices的连接关系

    2    device和platform_device Plarform device会有一个名字用于driver binding(在注册driver的时候会查找driver的目标设备的bus位置,这个过程称为driver binding),另外IRQ以及地址空间等资源也要给出 。

    platform_device结构体用来描述设备的名称、资源信息等。该结构被定义在

    #linux+v2.6.25/include/linux/platform_device.h#L16中,定义原型如下:

      16struct platform_device {   17        const char      * name; //定义平台设备的名称,此处设备的命名应和相应驱动程序命名一致

      18        int             id;   19        struct device   dev;   20        u32             num_resources;   21        struct resource * resource;  //定义平台设备的资源   22};

    在这个结构里封装了struct device及struct resource。可知:platform_device由device派生而来,是一种特殊的device。

    下面来看一下platform_device结构体中最重要的一个成员struct resource * resource。struct resource被定义在#linux+v2.6.25/include/linux /ioport.h#L18中,定义原型如下:   14/*   15 * Resources are tree-like, allowing   16 * nesting etc..   17 */   18struct resource {   19        resource_size_t start;  //定义资源的起始地址   20        resource_size_t end;  //定义资源的结束地址   21        const char *name; //定义资源的名称   22        unsigned long flags; 定义资源的类型,比如MEM,IO,IRQ,DMA类型   23        struct resource *parent, *sibling, *child;   24};

    这个结构表示设备所拥有的资源,即I/O端口、I/O映射内存、中断及DMA等。这里的地址指的是物理地址。

    另外还需要注意platform_device中的device结构,它详细描述了设备的情况,其为所有设备的基类,定义如下: #linux+v2.6.25/include/linux/device.h#L422 422struct device {  423        struct klist            klist_children;  424        struct klist_node       knode_parent;   /* node in sibling list */  425        struct klist_node       knode_driver;  426        struct klist_node       knode_bus;  427        struct device           *parent;  428  429        struct kobject kobj;  430        char    bus_id[BUS_ID_SIZE];    /* position on parent bus */  431        struct device_type      *type;  432        unsigned                is_registered:1;  433        unsigned                uevent_suppress:1;  434  435        struct semaphore        sem;    /* semaphore to synchronize calls to  436                                         * its driver.  437                                         */  438  439        struct bus_type *bus;           /* type of bus device is on */  440        struct device_driver *driver;   /* which driver has allocated this  441                                           device */  442        void            *driver_data;   /* data private to the driver */  443        void            *platform_data; /* Platform specific data, device  444                                           core doesn't touch it */  445        struct dev_pm_info      power;  446  447#ifdef CONFIG_NUMA  448        int             numa_node;      /* NUMA node this device is close to */  449#endif  450        u64             *dma_mask;      /* dma mask (if dma'able device) */  451        u64             coherent_dma_mask;/* Like dma_mask, but for  452                                             alloc_coherent mappings as  453                                             not all hardware supports  454                                             64 bit addresses for consistent  455                                             allocations such descriptors. */  456  457        struct device_dma_parameters *dma_parms;  458  459        struct list_head        dma_pools;      /* dma pools (if dma'ble) */  460  461        struct dma_coherent_mem *dma_mem; /* internal for coherent mem  462                                             override */  463        /* arch specific additions */  464        struct dev_archdata     archdata;  465  466        spinlock_t              devres_lock;  467        struct list_head        devres_head;  468  469        /* class_device migration path */  470        struct list_head        node;  471        struct class            *class;  472        dev_t                   devt;   /* dev_t, creates the sysfs "dev" */  473        struct attribute_group  **groups;       /* optional groups */  474  475        void    (*release)(struct device *dev);  476};  477

    3    device_register和platform_device_register

    #linux+v2.6.25/drivers/base/core.c#L881  870/**  871 * device_register - register a device with the system.  872 * @dev: pointer to the device structure  873 *  874 * This happens in two clean steps - initialize the device  875 * and add it to the system. The two steps can be called  876 * separately, but this is the easiest and most common.  877 * I.e. you should only call the two helpers separately if  878 * have a clearly defined need to use and refcount the device  879 * before it is added to the hierarchy.  880 */  881int device_register(struct device *dev)  882{  883        device_initialize(dev);  884        return device_add(dev);  885} 初始化一个设备,然后加入到系统中。

    #linux+v2.6.25/drivers/base/platform.c#L325 316/**  317 * platform_device_register - add a platform-level device  318 * @pdev: platform device we're adding  319 */  320int platform_device_register(struct platform_device *pdev)  321{  322        device_initialize(&pdev->dev);  323        return platform_device_add(pdev);  324}  325EXPORT_SYMBOL_GPL(platform_device_register);

    我们看到注册一个platform device分为了两部分,初始化这个platform_device,然后将此platform_device添加到platform总线中。输入参数platform_device可以是静态的全局设备。

    另外一种机制就是动态申请platform_device_alloc一个platform_device设备,然后通过platform_device_add_resources及platform_device_add_data等添加相关资源和属性。

    无论哪一种platform_device,最终都将通过platform_device_add注册到platform总线上。

    229/**  230 * platform_device_add - add a platform device to device hierarchy  231 * @pdev: platform device we're adding  232 *  233 * This is part 2 of platform_device_register(), though may be called  234 * separately _iff_ pdev was allocated by platform_device_alloc().  235 */  236int platform_device_add(struct platform_device *pdev)  237{  238        int i, ret = 0;  239  240        if (!pdev)  241                return -EINVAL;  242                初始化设备的parent为platform_bus,初始化设备的总线为platform_bus_type。  243        if (!pdev->dev.parent)  244                pdev->dev.parent = &platform_bus;  245  246        pdev->dev.bus = &platform_bus_type;  247 /*++++++++++++++ The platform_device.dev.bus_id is the canonical name for the devices. It's built from two components:

    * platform_device.name ... which is also used to for driver matching. * platform_device.id ... the device instance number, or else "-1" to indicate there's only one.

    These are concatenated, so name/id "serial"/0 indicates bus_id "serial.0", and "serial/3" indicates bus_id "serial.3"; both would use the platform_driver named "serial". While "my_rtc"/-1 would be bus_id "my_rtc" (no instance id) and use the platform_driver called "my_rtc". ++++++++++++++*/  248        if (pdev->id != -1)  249                snprintf(pdev->dev.bus_id, BUS_ID_SIZE, "%s.%d", pdev->name,  250                         pdev->id);  251        else  252                strlcpy(pdev->dev.bus_id, pdev->name, BUS_ID_SIZE);  253                 设置设备struct device 的bus_id成员,留心这个地方,在以后还需要用到这个的。  254        for (i = 0; i < pdev->num_resources; i++) {  255                struct resource *p, *r = &pdev->resource[i];  256  257                if (r->name == NULL)  258                        r->name = pdev->dev.bus_id;  259  260                p = r->parent;  261                if (!p) {  262                        if (r->flags & IORESOURCE_MEM)  263                                p = &iomem_resource;  264                        else if (r->flags & IORESOURCE_IO)  265                                p = &ioport_resource;  266                }                        //resources分为两种IORESOURCE_MEM和IORESOURCE_IO                       //CPU对外设IO端口物理地址的编址方式有两种:I/O映射方式和内存映射方式  267  268                if (p && insert_resource(p, r)) {  269                        printk(KERN_ERR  270                               "%s: failed to claim resource %d/n",  271                               pdev->dev.bus_id, i);  272                        ret = -EBUSY;  273                        goto failed;  274                }  275        }  276  277        pr_debug("Registering platform device '%s'. Parent at %s/n",  278                 pdev->dev.bus_id, pdev->dev.parent->bus_id);  279  280        ret = device_add(&pdev->dev);  281        if (ret == 0)  282                return ret;  283  284 failed:  285        while (--i >= 0)  286                if (pdev->resource[i].flags & (IORESOURCE_MEM|IORESOURCE_IO))  287                        release_resource(&pdev->resource[i]);  288        return ret;  289}  290EXPORT_SYMBOL_GPL(platform_device_add);

            由platform_device_register和platform_device_add的实现可知,device_register()和platform_device_register()都会首先初始化设备,区别在于第二步:其实platform_device_add()包括device_add(),不过要先注册resources,然后将设备挂接到特定的platform总线。

    4    device_driver和platform driver         Platform device是一种device自己是不会做事情的,要有人为它做事情,那就是platform driver。platform driver遵循linux系统的driver model。对于device的discovery/enumerate都不是driver自己完成的而是由由系统的driver注册机制完成。 driver编写人员只要将注册必须的数据结构初始化并调用注册driver的kernel API就可以了。

            接下来来看platform_driver结构体的原型定义,在

    #linux+v2.6.25/include/linux/platform_device.h#L48中,代码如下: 48 struct platform_driver {   49        int (*probe)(struct platform_device *);   50        int (*remove)(struct platform_device *);   51        void (*shutdown)(struct platform_device *);   52        int (*suspend)(struct platform_device *, pm_message_t state);   53        int (*suspend_late)(struct platform_device *, pm_message_t state);   54        int (*resume_early)(struct platform_device *);   55        int (*resume)(struct platform_device *);   56        struct device_driver driver;   57};

            可见,它包含了设备操作的几个功能函数,同时包含了一个device_driver结构,说明device_driver是 platform_driver的基类。驱动程序中需要初始化这个变量。下面看一下这个变量的定义,位于

    #linux+v2.6.25/include/linux/device.h#L121中:   121struct device_driver {  122        const char              *name;  123        struct bus_type         *bus;  124  125        struct module           *owner;  126        const char              *mod_name;      /* used for built-in modules */  127  128        int (*probe) (struct device *dev);  129        int (*remove) (struct device *dev);  130        void (*shutdown) (struct device *dev);  131        int (*suspend) (struct device *dev, pm_message_t state);  132        int (*resume) (struct device *dev);  133        struct attribute_group **groups;  134  135        struct driver_private *p;  136};

    device_driver提供了一些操作接口,但其并没有实现,相当于一些虚函数,由派生类platform_driver进行重载,无论何种类型的 driver都是基于device_driver派生而来的,具体的各种操作都是基于统一的基类接口的,这样就实现了面向对象的设计。

    需要注意这两个变量:name和owner。其作用主要是为了和相关的platform_device关联起来,owner的作用是说明模块的所有者,驱动程序中一般初始化为THIS_MODULE。

    device_driver结构中也有一个name变量。platform_driver从字面上来看就知道是设备驱动。设备驱动是为谁服务的呢?当然是设备了。内核正是通过这个一致性来为驱动程序找到资源,即 platform_device中的resource。

     

    5    driver_register 和platform_driver_register

     

    内核提供的platform_driver结构体的注册函数为platform_driver_register(),其原型定义在 #linux+v2.6.25/drivers/base/platform.c#L458文件中,具体实现代码如下: 439/**  440 * platform_driver_register  441 * @drv: platform driver structure  442 */  443int platform_driver_register(struct platform_driver *drv)  444{  445        drv->driver.bus = &platform_bus_type;               /*设置成platform_bus_type这个很重要,因为driver和device是通过bus联系在一起的,具体在本例中是通过                platform_bus_type中注册的回调例程和属性来是实现的, driver与device的匹配就是通过 platform_bus_type注册的回调例程platform_match ()来完成的。*/

     446        if (drv->probe)  447                drv->driver.probe = platform_drv_probe;                 //在really_probe函数中,回调了platform_drv_probe函数

    448        if (drv->remove)  449                drv->driver.remove = platform_drv_remove;  450        if (drv->shutdown)  451                drv->driver.shutdown = platform_drv_shutdown;  452        if (drv->suspend)  453                drv->driver.suspend = platform_drv_suspend;  454        if (drv->resume)  455                drv->driver.resume = platform_drv_resume;  456        return driver_register(&drv->driver);  457}  458EXPORT_SYMBOL_GPL(platform_driver_register);

    不要被上面的platform_drv_XXX吓倒了,它们其实很简单,就是将struct device转换为struct platform_device和struct platform_driver,然后调用platform_driver中的相应接口函数。那为什么不直接调用platform_drv_XXX等接口呢?这就是Linux内核中面向对象的设计思想。

     

    device_driver提供了一些操作接口,但其并没有实现,相当于一些虚函数,由派生类platform_driver进行重载,无论何种类型的 driver都是基于device_driver派生而来的,device_driver中具体的各种操作都是基于统一的基类接口的,这样就实现了面向对象的设计。

    在文件#linux+v2.6.25/drivers/base/driver.c#L234中,实现了driver_register()函数。

    209/**  210 * driver_register - register driver with bus  211 * @drv: driver to register  212 *  213 * We pass off most of the work to the bus_add_driver() call,  214 * since most of the things we have to do deal with the bus  215 * structures.  216 */  217int driver_register(struct device_driver *drv)  218{  219        int ret;  220               //如果总线的方法和设备自己的方法同时存在,将打印告警信息,对于platform bus,其没有probe等接口  221        if ((drv->bus->probe && drv->probe) ||  222            (drv->bus->remove && drv->remove) ||  223            (drv->bus->shutdown && drv->shutdown))  224                printk(KERN_WARNING "Driver '%s' needs updating - please use "  225                        "bus_type methods/n", drv->name);

     

                   //将驱动挂接到总线上,通过总线来驱动设备。  226        ret = bus_add_driver(drv);  227        if (ret)  228                return ret;  229        ret = driver_add_groups(drv, drv->groups);  230        if (ret)  231                bus_remove_driver(drv);  232        return ret;  233}  234EXPORT_SYMBOL_GPL(driver_register);

     

    644/**  645 * bus_add_driver - Add a driver to the bus.  646 * @drv: driver.  647 */  648int bus_add_driver(struct device_driver *drv)  649{  650        struct bus_type *bus;  651        struct driver_private *priv;  652        int error = 0;  653  654        bus = bus_get(drv->bus);  655        if (!bus)  656                return -EINVAL;  657  658        pr_debug("bus: '%s': add driver %s/n", bus->name, drv->name);  659  660        priv = kzalloc(sizeof(*priv), GFP_KERNEL);  661        if (!priv) {  662                error = -ENOMEM;  663                goto out_put_bus;  664        }  665        klist_init(&priv->klist_devices, NULL, NULL);  666        priv->driver = drv;  667        drv->p = priv;  668        priv->kobj.kset = bus->p->drivers_kset;  669        error = kobject_init_and_add(&priv->kobj, &driver_ktype, NULL,  670                                     "%s", drv->name);  671        if (error)  672                goto out_unregister;  673  674        if (drv->bus->p->drivers_autoprobe) {  675                error = driver_attach(drv);  676                if (error)  677                        goto out_unregister;  678        }  679        klist_add_tail(&priv->knode_bus, &bus->p->klist_drivers);  680        module_add_driver(drv->owner, drv);  681  682        error = driver_create_file(drv, &driver_attr_uevent);  683        if (error) {  684                printk(KERN_ERR "%s: uevent attr (%s) failed/n",  685                        __FUNCTION__, drv->name);  686        }  687        error = driver_add_attrs(bus, drv);  688        if (error) {  689                /* How the hell do we get out of this pickle? Give up */  690                printk(KERN_ERR "%s: driver_add_attrs(%s) failed/n",  691                        __FUNCTION__, drv->name);  692        }  693        error = add_bind_files(drv);  694        if (error) {  695                /* Ditto */  696                printk(KERN_ERR "%s: add_bind_files(%s) failed/n",  697                        __FUNCTION__, drv->name);  698        }  699  700        kobject_uevent(&priv->kobj, KOBJ_ADD);  701        return error;  702out_unregister:  703        kobject_put(&priv->kobj);  704out_put_bus:  705        bus_put(bus);  706        return error;  707}

     

    如果总线上的driver是自动probe的话,则将该总线上的driver和device绑定起来。

    #linux+v2.6.25/drivers/base/dd.c#L285 272/**  273 * driver_attach - try to bind driver to devices.  274 * @drv: driver.  275 *  276 * Walk the list of devices that the bus has on it and try to  277 * match the driver with each one.  If driver_probe_device()  278 * returns 0 and the @dev->driver is set, we've found a  279 * compatible pair.  280 */  281int driver_attach(struct device_driver *drv)  282{  283        return bus_for_each_dev(drv->bus, NULL, drv, __driver_attach);  284}  285EXPORT_SYMBOL_GPL(driver_attach);

    扫描该总线上的每一个设备,将当前driver和总线上的设备进行match,如果匹配成功,则将设备和driver绑定起来。

    246static int __driver_attach(struct device *dev, void *data)  247{  248        struct device_driver *drv = data;  249  250        /*  251         * Lock device and try to bind to it. We drop the error  252         * here and always return 0, because we need to keep trying  253         * to bind to devices and some drivers will return an error  254         * simply if it didn't support the device.  255         *  256         * driver_probe_device() will spit a warning if there  257         * is an error.  258         */  259  260        if (dev->parent)        /* Needed for USB */  261                down(&dev->parent->sem);  262        down(&dev->sem);

     

                     //如果该设备尚没有匹配的driver,则尝试匹配。  263        if (!dev->driver)  264                driver_probe_device(drv, dev);  265        up(&dev->sem);  266        if (dev->parent)  267                up(&dev->parent->sem);  268  269        return 0;  270}

     

    #linux+v2.6.25/drivers/base/dd.c#L187 170/**  171 * driver_probe_device - attempt to bind device & driver together  172 * @drv: driver to bind a device to  173 * @dev: device to try to bind to the driver  174 *  175 * First, we call the bus's match function, if one present, which should  176 * compare the device IDs the driver supports with the device IDs of the  177 * device. Note we don't do this ourselves because we don't know the  178 * format of the ID structures, nor what is to be considered a match and  179 * what is not.  180 *  181 * This function returns 1 if a match is found, -ENODEV if the device is  182 * not registered, and 0 otherwise.  183 *  184 * This function must be called with @dev->sem held.  When called for a  185 * USB interface, @dev->parent->sem must be held as well.  186 */  187int driver_probe_device(struct device_driver *drv, struct device *dev)  188{  189        int ret = 0;  190  191        if (!device_is_registered(dev))  192                return -ENODEV;  193        if (drv->bus->match && !drv->bus->match(dev, drv))  194                goto done;  195  196        pr_debug("bus: '%s': %s: matched device %s with driver %s/n",  197                 drv->bus->name, __FUNCTION__, dev->bus_id, drv->name);  198  199        ret = really_probe(dev, drv);  200  201done:  202        return ret;  203}

    193,如果该总线上的设备需要进行匹配,则验证是否匹配。对于platform总线,其匹配过程如下: #linux+v2.6.25/drivers/base/platform.c#L555 542/**  543 * platform_match - bind platform device to platform driver.  544 * @dev: device.  545 * @drv: driver.  546 *  547 * Platform device IDs are assumed to be encoded like this:  548 * "<name><instance>", where <name> is a short description of the type of  549 * device, like "pci" or "floppy", and <instance> is the enumerated  550 * instance of the device, like '0' or '42'.  Driver IDs are simply  551 * "<name>".  So, extract the <name> from the platform_device structure,  552 * and compare it against the name of the driver. Return whether they match  553 * or not.  554 */  555static int platform_match(struct device *dev, struct device_driver *drv)  556{  557        struct platform_device *pdev;  558  559        pdev = container_of(dev, struct platform_device, dev);  560        return (strncmp(pdev->name, drv->name, BUS_ID_SIZE) == 0);  561}

    560,简单的进行字符串匹配,这也是我们强调platform_device和platform_driver中的name属性需要一致的原因。

    匹配成功后,则调用probe接口。 #linux+v2.6.25/drivers/base/dd.c#L101   98static atomic_t probe_count = ATOMIC_INIT(0);   99static DECLARE_WAIT_QUEUE_HEAD(probe_waitqueue);  100  101static int really_probe(struct device *dev, struct device_driver *drv)  102{  103        int ret = 0;  104  105        atomic_inc(&probe_count);  106        pr_debug("bus: '%s': %s: probing driver %s with device %s/n",  107                 drv->bus->name, __FUNCTION__, drv->name, dev->bus_id);  108        WARN_ON(!list_empty(&dev->devres_head));  109  110        dev->driver = drv;  111        if (driver_sysfs_add(dev)) {  112                printk(KERN_ERR "%s: driver_sysfs_add(%s) failed/n",  113                        __FUNCTION__, dev->bus_id);  114                goto probe_failed;  115        }  116  117        if (dev->bus->probe) {  118                ret = dev->bus->probe(dev);  119                if (ret)  120                        goto probe_failed;  121        } else if (drv->probe) {  122                ret = drv->probe(dev);  123                if (ret)  124                        goto probe_failed;  125        }  126  127        driver_bound(dev);  128        ret = 1;  129        pr_debug("bus: '%s': %s: bound device %s to driver %s/n",  130                 drv->bus->name, __FUNCTION__, dev->bus_id, drv->name);  131        goto done;  132  133probe_failed:  134        devres_release_all(dev);  135        driver_sysfs_remove(dev);  136        dev->driver = NULL;  137  138        if (ret != -ENODEV && ret != -ENXIO) {  139                /* driver matched but the probe failed */  140                printk(KERN_WARNING  141                       "%s: probe of %s failed with error %d/n",  142                       drv->name, dev->bus_id, ret);  143        }  144        /*  145         * Ignore errors returned by ->probe so that the next driver can try  146         * its luck.  147         */  148        ret = 0;  149done:  150        atomic_dec(&probe_count);  151        wake_up(&probe_waitqueue);  152        return ret;  153}

     

     

    如果bus和driver同时具备probe方法,则优先调用总线的probe函数。否则调用device_driver的probe函数,此probe 函数是经过各种类型的driver重载的函数,这就实现了利用基类的统一方法来实现不同的功能。对于platform_driver来说,其就是: #linux+v2.6.25/drivers/base/platform.c#L394 394static int platform_drv_probe(struct device *_dev)  395{  396        struct platform_driver *drv = to_platform_driver(_dev->driver);  397        struct platform_device *dev = to_platform_device(_dev);  398  399        return drv->probe(dev);  400}

    然后调用特定platform_driver所定义的操作方法,这个是在定义某个platform_driver时静态指定的操作接口。

    至此,platform_driver成功挂接到platform bus上了,并与特定的设备实现了绑定,并对设备进行了probe处理。

     

    6    bus、device及driver三者之间的关系 在数据结构设计上,总线、设备及驱动三者相互关联。

    platform device包含device,根据device可以获得相应的bus及driver。

    设备添加到总线上后形成一个双向循环链表,根据总线可以获得其上挂接的所有device,进而获得了 platform device。根据device也可以获得驱动该总线上所有设备的相关driver。

    platform driver包含driver,根据driver可以获得相应的bus,进而获得bus上所有的device,进一步获得platform device,根据name对driver与platform device进行匹配,匹配成功后将device与相应的driver关联起来,即实现了platform device和platform driver的关联。

    匹配成功后调用driver的probe进而调用platform driver的probe,在probe里实现驱动特定的功能。

    7    哪些适用于plarform驱动? platform机制将设备本身的资源注册进内核,由内核统一管理,在驱动程序中使用这些资源时通过platform device提供的标准接口进行申请并使用。这样提高了驱动和资源管理的独立性,这样拥有更好的可移植性。platform机制的本身使用并不复杂,由两部分组成:platform_device和platfrom_driver。Platform driver通过platform bus获取platform_device。

    通常情况下只要和内核本身运行依赖性不大的外围设备,相对独立的,拥有各自独立的资源(地址总线和IRQs),都可以用 platform_driver来管理,而timer,irq等小系统之内的设备则最好不用platfrom_driver机制。

    platform_device最大的特定是CPU直接寻址设备的寄存器空间,即使对于其他总线设备,设备本身的寄存器无法通过CPU总线访问,但总线的controller仍然需要通过platform bus来管理。

    总之,platfrom_driver的根本目的是为了统一管理系统的外设资源,为驱动程序提供统一的接口来访问系统资源,将驱动和资源分离,提高程序的可移植性。

    8    基于platform总线的驱动开发流程 基于Platform总线的驱动开发流程如下: •    定义初始化platform bus •    定义各种platform devices •    注册各种platform devices •    定义相关platform driver •    注册相关platform driver •    操作相关设备

     

     

    以S3C24xx平台为例,来简单讲述下platform驱动的实现流程。 8.1    初始化platform_bus Platform总线的初始化是在platform_bus_init()完成的,代码如下: #linux+v2.6.25/drivers/base/platform.c#L621   26struct device platform_bus = {   27        .bus_id         = "platform",   28};   29EXPORT_SYMBOL_GPL(platform_bus);

    621int __init platform_bus_init(void)  622{  623        int error;  624  625        error = device_register(&platform_bus);  626        if (error)  627                return error;  628        error =  bus_register(&platform_bus_type);  629        if (error)  630                device_unregister(&platform_bus);  631        return error;  632}

    该函数创建了一个名为 “platform”的设备,后续platform的设备都会以此为parent。在sysfs中表示为:所有platform类型的设备都会添加在 platform_bus所代表的目录下,即 /sys/devices/platform下面。 -sh-3.1# ls /sys/devices/platform/   Fixed MDIO bus.0     fsl-i2c.0            serial8250 fsl-ehci.0           fsl-i2c.1            serial8250.0 fsl-gianfar.0        mpc83xx_spi.0        uevent fsl-gianfar.1        mpc83xx_wdt.0 fsl-gianfar_mdio.-5  power

    -sh-3.1# ls /sys/ block/    class/    firmware/ kernel/   power/    bus/      devices/  fs/       module/   -sh-3.1# ls /sys/bus/ i2c/         of_platform/ pci_express/ scsi/        usb/         mdio_bus/    pci/         platform/    spi/         -sh-3.1# ls /sys/bus/i2c/ devices/           drivers_autoprobe  uevent             drivers/           drivers_probe   

    -sh-3.1# ls /sys/bus/platform/devices/ Fixed MDIO bus.0/    fsl-gianfar_mdio.-5/ mpc83xx_wdt.0/ fsl-ehci.0/          fsl-i2c.0/           serial8250/ fsl-gianfar.0/       fsl-i2c.1/           serial8250.0/ fsl-gianfar.1/       mpc83xx_spi.0/       -sh-3.1# ls /sys/bus/platform/drivers drivers/           drivers_autoprobe  drivers_probe      -sh-3.1# ls /sys/bus/platform/drivers/ fsl-ehci/         fsl-gianfar_mdio/ mpc83xx_spi/      serial8250/ fsl-gianfar/      fsl-i2c/          mpc83xx_wdt/    

    platform_bus必须在系统注册任何platform driver和platform device之前初始化,那么这是如何实现的呢?

    #linux+v2.6.25/drivers/base/init.c

      14/**   15 * driver_init - initialize driver model.   16 *   17 * Call the driver model init functions to initialize their   18 * subsystems. Called early from init/main.c.   19 */   20void __init driver_init(void)   21{   22        /* These are the core pieces */   23        devices_init();   24        buses_init();   25        classes_init();   26        firmware_init();   27        hypervisor_init();   28   29        /* These are also core pieces, but must come after the   30         * core core pieces.   31         */   32        platform_bus_init();   33        system_bus_init();   34        cpu_dev_init();   35        memory_dev_init();   36}

    init/main.c start_kernel  》 rest_init  》 kernel_init  》 do_basic_setup》driver_init 》platform_bus_init

    #linux+v2.6.25/drivers/base/init.c#L32 724/*  725 * Ok, the machine is now initialized. None of the devices  726 * have been touched yet, but the CPU subsystem is up and  727 * running, and memory and process management works.  728 *  729 * Now we can finally start doing some real work..  730 */  731static void __init do_basic_setup(void)  732{  733        /* drivers will send hotplug events */  734        init_workqueues();  735        usermodehelper_init();  736        driver_init();  737        init_irq_proc();  738        do_initcalls();  739}

    platform driver和platform device的初始化是在do_initcalls中进行的。

    8.2    定义platform_device #linux+v2.6.25/arch/arm/plat-s3c24xx/devs.c#L276中定义了系统的资源,是一个高度可移植的文件,大部分板级资源都在这里集中定义。

    274/* I2C */  275  276static struct resource s3c_i2c_resource[] = {  277        [0] = {  278                .start = S3C24XX_PA_IIC,  279                .end   = S3C24XX_PA_IIC + S3C24XX_SZ_IIC - 1,  280                .flags = IORESOURCE_MEM,  281        },  282        [1] = {  283                .start = IRQ_IIC,  284                .end   = IRQ_IIC,  285                .flags = IORESOURCE_IRQ,  286        }  287  288};  289  290struct platform_device s3c_device_i2c = {  291        .name             = "s3c2410-i2c",  292        .id               = -1,  293        .num_resources    = ARRAY_SIZE(s3c_i2c_resource),  294        .resource         = s3c_i2c_resource,  295};  296  297EXPORT_SYMBOL(s3c_device_i2c);

    设备名称为s3c2410-i2c,“-1”只有一个i2c设备,两个资源s3c_i2c_resource,分别为i2c控制器的寄存器空间和中断信息。

    8.3    注册platform_device

    定义了platform_device后,需要添加到系统中,就可以调用函数platform_add_devices。 #linux+v2.6.25/arch/arm/mach-s3c2440/mach-smdk2440.c

    smdk2440_devices将系统资源组织起来,统一注册进内核。

    151static struct platform_device *smdk2440_devices[] __initdata = {  152        &s3c_device_usb,  153        &s3c_device_lcd,  154        &s3c_device_wdt,  155        &s3c_device_i2c,  156        &s3c_device_iis,  157};

    166static void __init smdk2440_machine_init(void)  167{  168        s3c24xx_fb_set_platdata(&smdk2440_fb_info);  169  170        platform_add_devices(smdk2440_devices, ARRAY_SIZE(smdk2440_devices));  171        smdk_machine_init();  172}  173  174MACHINE_START(S3C2440, "SMDK2440")  175        /* Maintainer: Ben Dooks <ben@fluff.org> */  176        .phys_io        = S3C2410_PA_UART,  177        .io_pg_offst    = (((u32)S3C24XX_VA_UART) >> 18) & 0xfffc,  178        .boot_params    = S3C2410_SDRAM_PA + 0x100,  179  180        .init_irq       = s3c24xx_init_irq,  181        .map_io         = smdk2440_map_io,  182        .init_machine   = smdk2440_machine_init,  183        .timer          = &s3c24xx_timer,  184MACHINE_END

    170        platform_add_devices(smdk2440_devices, ARRAY_SIZE(smdk2440_devices)); 将系统所有资源注册进系统,在此之前platform bus需要初始化成功,否则无法将platform devices挂接到platform bus上。为了保证platform drive初始化时,相关platform资源已经注册进系统,smdk2440_machine_init需要很早执行,而其作为平台初始化 init_machine 时,将优先于系统所有驱动的初始化。

    其调用顺序如下: start_kernel》setup_arch》init_machine》arch_initcall(customize_machine) #linux+v2.6.25/arch/arm/kernel/setup.c#L788 786arch_initcall(customize_machine);  787  788void __init setup_arch(char **cmdline_p)  789{  790        struct tag *tags = (struct tag *)&init_tags;  791        struct machine_desc *mdesc;  792        char *from = default_command_line;  793  794        setup_processor();  795        mdesc = setup_machine(machine_arch_type); //根据machine id获得移植时定义的machine desc结构  796        machine_name = mdesc->name;  797  798        if (mdesc->soft_reboot)  799                reboot_setup("s");  800  801        if (__atags_pointer)  802                tags = phys_to_virt(__atags_pointer);  803        else if (mdesc->boot_params)  804                tags = phys_to_virt(mdesc->boot_params);  805  806        /*  807         * If we have the old style parameters, convert them to  808         * a tag list.  809         */  810        if (tags->hdr.tag != ATAG_CORE)  811                convert_to_tag_list(tags);  812        if (tags->hdr.tag != ATAG_CORE)  813                tags = (struct tag *)&init_tags;  814  815        if (mdesc->fixup)  816                mdesc->fixup(mdesc, tags, &from, &meminfo);  817  818        if (tags->hdr.tag == ATAG_CORE) {  819                if (meminfo.nr_banks != 0)  820                        squash_mem_tags(tags);  821                save_atags(tags);  822                parse_tags(tags);  823        }  824  825        init_mm.start_code = (unsigned long) &_text;  826        init_mm.end_code   = (unsigned long) &_etext;  827        init_mm.end_data   = (unsigned long) &_edata;  828        init_mm.brk        = (unsigned long) &_end;  829  830        memcpy(boot_command_line, from, COMMAND_LINE_SIZE);  831        boot_command_line[COMMAND_LINE_SIZE-1] = '/0';  832        parse_cmdline(cmdline_p, from);  833        paging_init(&meminfo, mdesc);  834        request_standard_resources(&meminfo, mdesc);  835  836#ifdef CONFIG_SMP  837        smp_init_cpus();  838#endif  839  840        cpu_init();  841  842        /*  843         * Set up various architecture-specific pointers  844         */  845        init_arch_irq = mdesc->init_irq;  846        system_timer = mdesc->timer;  847        init_machine = mdesc->init_machine; //对init_machine指针赋值  848  849#ifdef CONFIG_VT  850#if defined(CONFIG_VGA_CONSOLE)  851        conswitchp = &vga_con;  852#elif defined(CONFIG_DUMMY_CONSOLE)  853        conswitchp = &dummy_con;  854#endif  855#endif  856}

    777static void (*init_machine)(void) __initdata;  778  779static int __init customize_machine(void)  780{  781        /* customizes platform devices, or adds new ones */  782        if (init_machine)  783                init_machine();  784        return 0;  785}  786arch_initcall(customize_machine); arch_initcall将customize_machine放在特定的段中,系统将在某个地方运行所有的arch_initcall修饰的函数。

    #linux+v2.6.25/include/linux/init.h#L182 152#ifndef MODULE  //非可加载模块,即编译链接进内核的代码  153  154#ifndef __ASSEMBLY__  155  156/* initcalls are now grouped by functionality into separate  157 * subsections. Ordering inside the subsections is determined  158 * by link order.  159 * For backwards compatibility, initcall() puts the call in  160 * the device init subsection.  161 *  162 * The `id' arg to __define_initcall() is needed so that multiple initcalls  163 * can point at the same handler without causing duplicate-symbol build errors.  164 */  165  166#define __define_initcall(level,fn,id) /  167        static initcall_t __initcall_##fn##id __used /  168        __attribute__((__section__(".initcall" level ".init"))) = fn  169  170/*  171 * A "pure" initcall has no dependencies on anything else, and purely  172 * initializes variables that couldn't be statically initialized.  173 *  174 * This only exists for built-in code, not for modules.  175 */  176#define pure_initcall(fn)               __define_initcall("0",fn,0)  177  178#define core_initcall(fn)               __define_initcall("1",fn,1)  179#define core_initcall_sync(fn)          __define_initcall("1s",fn,1s)  180#define postcore_initcall(fn)           __define_initcall("2",fn,2)  181#define postcore_initcall_sync(fn)      __define_initcall("2s",fn,2s)  182#define arch_initcall(fn)               __define_initcall("3",fn,3)  183#define arch_initcall_sync(fn)          __define_initcall("3s",fn,3s)  184#define subsys_initcall(fn)             __define_initcall("4",fn,4)  185#define subsys_initcall_sync(fn)        __define_initcall("4s",fn,4s)  186#define fs_initcall(fn)                 __define_initcall("5",fn,5)  187#define fs_initcall_sync(fn)            __define_initcall("5s",fn,5s)  188#define rootfs_initcall(fn)             __define_initcall("rootfs",fn,rootfs)  189#define device_initcall(fn)             __define_initcall("6",fn,6)  190#define device_initcall_sync(fn)        __define_initcall("6s",fn,6s)  191#define late_initcall(fn)               __define_initcall("7",fn,7)  192#define late_initcall_sync(fn)          __define_initcall("7s",fn,7s)  193  194#define __initcall(fn) device_initcall(fn)  195  196#define __exitcall(fn) /  197        static exitcall_t __exitcall_##fn __exit_call = fn  198 。。。。。。。。。  239#endif /* __ASSEMBLY__ */  240  241/**  242 * module_init() - driver initialization entry point  243 * @x: function to be run at kernel boot time or module insertion  244 *  245 * module_init() will either be called during do_initcalls() (if  246 * builtin) or at module insertion time (if a module).  There can only  247 * be one per module.  248 */  249#define module_init(x)  __initcall(x);  250  251/**  252 * module_exit() - driver exit entry point  253 * @x: function to be run when driver is removed  254 *  255 * module_exit() will wrap the driver clean-up code  256 * with cleanup_module() when used with rmmod when  257 * the driver is a module.  If the driver is statically  258 * compiled into the kernel, module_exit() has no effect.  259 * There can only be one per module.  260 */  261#define module_exit(x)  __exitcall(x);  262  263#else /* MODULE */

    各种xx_core_initcall被定义到了不同的分级的段中 所以arch_initcall == __initcall_fn3 它将被链接器放于section  .initcall3.init. 中

    module_init()==__initcall(fn)==device_initcall(fn)== __initcall_fn6

    各个段的优先级由链接脚本定义 #linux+v2.6.25/include/asm-generic/vmlinux.lds.h#L328 #define INITCALLS       /    *(.initcall0.init)      /    *(.initcall0s.init)      /    *(.initcall1.init)      /    *(.initcall1s.init)      /    *(.initcall2.init)      /    *(.initcall2s.init)      /    *(.initcall3.init)      /    *(.initcall3s.init)      /    *(.initcall4.init)      /    *(.initcall4s.init)      /    *(.initcall5.init)      /    *(.initcall5s.init)      /  *(.initcallrootfs.init)      /    *(.initcall6.init)      /    *(.initcall6s.init)      /    *(.initcall7.init)      /    *(.initcall7s.init)

    这个__initcall_start是在文件arch/xxx/kernel/vmlinux.lds.S定义的: __initcall_start = .;    INITCALLS   __initcall_end = .;

    #linux+v2.6.25/init/main.c#L664 664static void __init do_initcalls(void)  665{  666        initcall_t *call;  667        int count = preempt_count();  668  669        for (call = __initcall_start; call < __initcall_end; call++) { .。。。。  682  683                result = (*call)();  684 。。。 }                720        /* Make sure there is no pending stuff from the initcall sequence */  721        flush_scheduled_work();  722}

    因此__initcall_fnx,数字越小,越先被调用,故arch_initcall优先于module_init所修饰的函数。

    arch_initcall修饰的函数的调用顺序如下: start_kernel  》 rest_init(在setup_arch之后)  》 kernel_init  》 do_basic_setup》do_initcalls(在driver_init()之后),因为platform_bus_init在此之前已经初始化完毕了,便可将设备挂接到总线上了。

    8.4    定义platform_driver Platform bus和设备都定义好了后,需要定义一个platform driver用来驱动此设备。

    对于设备来说: 290struct platform_device s3c_device_i2c = {  291        .name             = "s3c2410-i2c",  292        .id               = -1,  293        .num_resources    = ARRAY_SIZE(s3c_i2c_resource),  294        .resource         = s3c_i2c_resource,  295};  296  297EXPORT_SYMBOL(s3c_device_i2c);

    根据platform总线上device和driver的匹配规则可知,I2C 的platform driver的名字是s3c2410-i2c。

    #linux+v2.6.25/drivers/i2c/busses/i2c-s3c2410.c#L1 903/* device driver for platform bus bits */  904  905static struct platform_driver s3c2410_i2c_driver = {  906        .probe          = s3c24xx_i2c_probe,  907        .remove         = s3c24xx_i2c_remove,  908        .resume         = s3c24xx_i2c_resume,  909        .driver         = {  910                .owner  = THIS_MODULE,  911                .name   = "s3c2410-i2c",  912        },  913};

    8.5    注册platform_driver #linux+v2.6.25/drivers/i2c/busses/i2c-s3c2410.c#L1

    925static int __init i2c_adap_s3c_init(void)  926{  927        int ret;  928  929        ret = platform_driver_register(&s3c2410_i2c_driver);  930        if (ret == 0) {  931                ret = platform_driver_register(&s3c2440_i2c_driver);  932                if (ret)  933                        platform_driver_unregister(&s3c2410_i2c_driver);  934        }  935  936        return ret;  937}  938

    945module_init(i2c_adap_s3c_init);  946module_exit(i2c_adap_s3c_exit);

    在i2c_adap_s3c_init中注册s3c2410_i2c_driver,那么i2c_adap_s3c_init何时执行的呢?module_init(i2c_adap_s3c_init)表明其存放在initcall段,调用顺序如下: init/main.c start_kernel  》 rest_init  》 kernel_init  》 do_basic_setup》do_initcalls,因为platform_bus_init在此之前已经初始化完毕了,且设备已经注册到内核中了,驱动将和内核绑定,并最终调用s3c24xx_i2c_probe。

    748/* s3c24xx_i2c_probe  749 *  750 * called by the bus driver when a suitable device is found  751*/  752  753static int s3c24xx_i2c_probe(struct platform_device *pdev)  754{  755        struct s3c24xx_i2c *i2c = &s3c24xx_i2c;  756        struct resource *res;  757        int ret;  758  759        /* find the clock and enable it */  760  761        i2c->dev = &pdev->dev;  762        i2c->clk = clk_get(&pdev->dev, "i2c");  763        if (IS_ERR(i2c->clk)) {  764                dev_err(&pdev->dev, "cannot get clock/n");  765                ret = -ENOENT;  766                goto err_noclk;  767        }  768  769        dev_dbg(&pdev->dev, "clock source %p/n", i2c->clk);  770  771        clk_enable(i2c->clk);  772  773        /* map the registers */  774  775        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);  776        if (res == NULL) {  777                dev_err(&pdev->dev, "cannot find IO resource/n");  778                ret = -ENOENT;  779                goto err_clk;  780        }  781  782        i2c->ioarea = request_mem_region(res->start, (res->end-res->start)+1,  783                                         pdev->name);  784  785        if (i2c->ioarea == NULL) {  786                dev_err(&pdev->dev, "cannot request IO/n");  787                ret = -ENXIO;  788                goto err_clk;  789        }  790  791        i2c->regs = ioremap(res->start, (res->end-res->start)+1);  792  793        if (i2c->regs == NULL) {  794                dev_err(&pdev->dev, "cannot map IO/n");  795                ret = -ENXIO;  796                goto err_ioarea;  797        }  798  799        dev_dbg(&pdev->dev, "registers %p (%p, %p)/n", i2c->regs, i2c->ioarea, res);  800  801        /* setup info block for the i2c core */  802  803        i2c->adap.algo_data = i2c;  804        i2c->adap.dev.parent = &pdev->dev;  805  806        /* initialise the i2c controller */  807  808        ret = s3c24xx_i2c_init(i2c);  809        if (ret != 0)  810                goto err_iomap;  811  812        /* find the IRQ for this unit (note, this relies on the init call to  813         * ensure no current IRQs pending  814         */  815  816        res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);  817        if (res == NULL) {  818                dev_err(&pdev->dev, "cannot find IRQ/n");  819                ret = -ENOENT;  820                goto err_iomap;  821        }  822  823        ret = request_irq(res->start, s3c24xx_i2c_irq, IRQF_DISABLED,  824                          pdev->name, i2c);  825  826        if (ret != 0) {  827                dev_err(&pdev->dev, "cannot claim IRQ/n");  828                goto err_iomap;  829        }  830  831        i2c->irq = res;  832                 833        dev_dbg(&pdev->dev, "irq resource %p (%lu)/n", res,  834                (unsigned long)res->start);  835  836        ret = i2c_add_adapter(&i2c->adap);  837        if (ret < 0) {  838                dev_err(&pdev->dev, "failed to add bus to i2c core/n");  839                goto err_irq;  840        }  841  842        platform_set_drvdata(pdev, i2c);  843  844        dev_info(&pdev->dev, "%s: S3C I2C adapter/n", i2c->adap.dev.bus_id);  845        return 0;  846  847 err_irq:  848        free_irq(i2c->irq->start, i2c);  849  850 err_iomap:  851        iounmap(i2c->regs);  852  853 err_ioarea:  854        release_resource(i2c->ioarea);  855        kfree(i2c->ioarea);  856  857 err_clk:  858        clk_disable(i2c->clk);  859        clk_put(i2c->clk);  860  861 err_noclk:  862        return ret;  863}

    当进入probe函数后,需要获取设备的资源信息,常用获取资源的函数主要是: struct resource * platform_get_resource(struct platform_device *dev, unsigned int type, unsigned int num); 根据参数type所指定类型,例如IORESOURCE_MEM,来获取指定的资源。 struct int platform_get_irq(struct platform_device *dev, unsigned int num); 获取资源中的中断号。 struct resource * platform_get_resource_byname(struct platform_device *dev, unsigned int type, char *name); 根据参数name所指定的名称,来获取指定的资源。 int platform_get_irq_byname(struct platform_device *dev, char *name); 根据参数name所指定的名称,来获取资源中的中断号。

    此probe函数获取物理IO空间,通过request_mem_region和ioremap等操作物理地址转换成内核中的虚拟地址,初始化I2C控制器,通过platform_get_irq或platform_get_resource得到设备的中断号以后,就可以调用request_irq函数来向系统注册中断,并将此I2C控制器添加到系统中。

    8.6    操作设备 进行了platform_device_register 和platform_driver_register后,驱动的相应信息就出现在sys目录的相应文件夹下,然后,我们该如何调用设备呢??怎么对设备进行打开读写等操作呢???

    Platform总线只是为了方便管理挂接在CPU总线上的设备,与用户空间的交互,如读写还是需要利用file_operations。当然如果此platform设备无需和用户空间交互,则无需file_operations实例。

    对于I2C总线来说,其file_operations如下: #linux+v2.6.25/drivers/i2c/i2c-core.c#L461  478static const struct file_operations i2cdev_fops = {  479        .owner          = THIS_MODULE,  480        .llseek         = no_llseek,  481        .read           = i2cdev_read,  482        .write          = i2cdev_write,  483        .ioctl          = i2cdev_ioctl,  484        .open           = i2cdev_open,  485        .release        = i2cdev_release,  486};

    其和platform bus的区别在于,platform bus提供机制访问I2C 控制器本身的资源,而I2C总线提供访问I2C 控制器上挂接的I2C设备的机制。

     


    最新回复(0)