Java中Iterator 、Vector、ArrayList、List 使用深入剖析

    技术2022-06-23  49

    线性表,链表,哈希表是常用的数据结构,在进行Java开发时,JDK已经为我们提供了一系列相应的类来实现基本的数据结构。这些类均在java.util包中。本文试图通过简单的描述,向读者阐述各个类的作用以及如何正确使用这些类。

    Collection ├List │├LinkedList │├ArrayList │└Vector │ └Stack └Set Map ├Hashtable ├HashMap └WeakHashMap

     

    Collection接口   Collection是最基本的集合接口,一个Collection代表一组Object,即Collection的元素 (Elements)。一些 Collection允许相同的元素而另一些不行。一些能排序而另一些不行。Java SDK不提供直接继承自Collection的类, Java SDK提供的类都是继承自Collection的“子接口”如List和Set。   所有实现Collection接口的类都必须提供两个标准的构造函数:无参数的构造函数用于创建一个空的Collection,有一个 Collection参数的构造函数用于创建一个新的 Collection,这个新的Collection与传入的Collection有相同的元素。后一个构造函数允许用户复制一个Collection。   如何遍历Collection中的每一个元素?不论Collection的实际类型如何,它都支持一个iterator()的方法,该方法返回一个迭代子,使用该迭代子即可逐一访问Collection中每一个元素。典型的用法如下:

      Iterator it = collection.iterator(); // 获得一个迭代子     while(it.hasNext()) {       Object obj = it.next(); // 得到下一个元素     }

     由Collection接口派生的两个接口是List和Set。

     

    用Iterator模式实现遍历集合 Iterator模式是用于遍历集合类的标准访问方法。它可以把访问逻辑从不同类型的集合类中抽象出来,从而避免向客户端暴露集合的内部结构。 例如,如果没有使用Iterator,遍历一个数组的方法是使用索引:

    for(int i=0; i<array.size(); i++) { ... get(i) ... }

     

    而访问一个链表(LinkedList)又必须使用while循环:

    while((e=e.next())!=null) { ... e.data() ... }

     

    奥秘在于客户端自身不维护遍历集合的"指针",所有的内部状态(如当前元素位置,是否有下一个元素)都由Iterator来维护,而这个Iterator由集合类通过工厂方法生成,因此,它知道如何遍历整个集合。 客户端从不直接和集合类打交道,它总是控制Iterator,向它发送"向前","向后","取当前元素"的命令,就可以间接遍历整个集合。 首先看看java.util.Iterator接口的定义:

    public interface Iterator { boolean hasNext(); Object next(); void remove(); }

     

    依赖前两个方法就能完成遍历,典型的代码如下:

    for(Iterator it = c.iterator(); it.hasNext(); ) { Object o = it.next(); // 对o的操作... }

     

    在JDK1.5中,还对上面的代码在语法上作了简化:       // Type是具体的类型,如String。       for(Type t : c) {           // 对t的操作...       } 每一种集合类返回的Iterator具体类型可能不同,Array可能返回ArrayIterator,Set可能返回 SetIterator,Tree可能返回TreeIterator,但是它们都实现了Iterator接口,因此,客户端不关心到底是哪种 Iterator,它只需要获得这个Iterator接口即可,这就是面向对象的威力。 Iterator源码剖析 让我们来看看AbstracyList如何创建Iterator。首先AbstractList定义了一个内部类(inner class):

    private class Itr implements Iterator { ... }

     

    而iterator()方法的定义是:

    public Iterator iterator() { return new Itr(); }

     

    因此客户端不知道它通过Iterator it = a.iterator();所获得的Iterator的真正类型。 现在我们关心的是这个申明为private的Itr类是如何实现遍历AbstractList的:

    private class Itr implements Iterator { int cursor = 0; int lastRet = -1; int expectedModCount = modCount; }

     

    Itr类依靠3个int变量(还有一个隐含的AbstractList的引用)来实现遍历,cursor是下一次next()调用时元素的位置,第一次调用next()将返回索引为0的元素。lastRet记录上一次游标所在位置,因此它总是比cursor少1。 变量cursor和集合的元素个数决定hasNext():

    public boolean hasNext() { return cursor != size(); }

     

    方法next()返回的是索引为cursor的元素,然后修改cursor和lastRet的值:

    public Object next() { checkForComodification(); try { Object next = get(cursor); lastRet = cursor++; return next; } catch(IndexOutOfBoundsException e) { checkForComodification(); throw new NoSuchElementException(); } }

     

    expectedModCount表示期待的modCount值,用来判断在遍历过程中集合是否被修改过。AbstractList包含一个 modCount变量,它的初始值是0,当集合每被修改一次时(调用add,remove等方法),modCount加1。因此,modCount如果不 变,表示集合内容未被修改。 Itr初始化时用expectedModCount记录集合的modCount变量,此后在必要的地方它会检测modCount的值:

    final void checkForComodification() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); }

     

    如果modCount与一开始记录在expectedModeCount中的值不等,说明集合内容被修改过,此时会抛出ConcurrentModificationException。 这个ConcurrentModificationException是RuntimeException,不要在客户端捕获它。如果发生此异常,说明程序代码的编写有问题,应该仔细检查代码而不是在catch中忽略它。 但是调用Iterator自身的remove()方法删除当前元素是完全没有问题的,因为在这个方法中会自动同步expectedModCount和modCount的值:

    public void remove() { ... AbstractList.this.remove(lastRet); ... // 在调用了集合的remove()方法之后重新设置了expectedModCount: expectedModCount = modCount; ... }

     

    要确保遍历过程顺利完成,必须保证遍历过程中不更改集合的内容(Iterator的remove()方法除外),因此,确保遍历可靠的原则是只在一个线程中使用这个集合,或者在多线程中对遍历代码进行同步。 最后给个完整的示例:

    Collection c = new ArrayList(); c.add("abc"); c.add("xyz"); for(Iterator it = c.iterator(); it.hasNext(); ) { String s = (String)it.next(); System.out.println(s); }

     

    如果你把第一行代码的ArrayList换成LinkedList或Vector,剩下的代码不用改动一行就能编译,而且功能不变,这就是针对抽象编程的原则:对具体类的依赖性最小。 List接口   List是有序的Collection,使用此接口能够精确的控制每个元素插入的位置。用户能够使用索引(元素在List中的位置,类似于数组下标)来访问List中的元素,这类似于Java的数组。 和下面要提到的Set不同,List允许有相同的元素。   除了具有Collection接口必备的iterator()方法外,List还提供一个listIterator()方法,返回一个 ListIterator接口,和标准的Iterator接口相比,ListIterator多了一些add()之类的方法,允许添加,删除,设定元素, 还能向前或向后遍历。   实现List接口的常用类有LinkedList,ArrayList,Vector和Stack。 LinkedList类   LinkedList实现了List接口,允许null元素。此外LinkedList提供额外的 get,remove,insert方法在 LinkedList的首部或尾部。这些操作使LinkedList可被用作堆栈(stack),队列(queue)或双向队列(deque)。   注意LinkedList没有同步方法。如果多个线程同时访问一个List,则必须自己实现访问同步。一种解决方法是在创建List时构造一个同步的List:

    List list = Collections.synchronizedList(new LinkedList(...));

     

    ArrayList类   ArrayList实现了可变大小的数组。它允许所有元素,包括null。ArrayList没有同步。 size,isEmpty,get,set方法运行时间为常数。但是add方法开销为分摊的常数,添加n个元素需要O(n)的时间。其他的方法运行时间为线性。   每个ArrayList实例都有一个容量(Capacity),即用于存储元素的数组的大小。这个容量可随着不断添加新元素而自动增加,但是 增长算法并没有定义。当需要插入大量元素时,在插入前可以调用ensureCapacity方法来增加ArrayList的容量以提高插入效率。   和LinkedList一样,ArrayList也是非同步的(unsynchronized)。 Vector类   Vector非常类似ArrayList,但是Vector是同步的。由Vector创建的Iterator,虽然和 ArrayList创建的 Iterator是同一接口,但是,因为Vector是同步的,当一个Iterator被创建而且正在被使用,另一个线程改变了Vector的状态(例 如,添加或删除了一些元素)。

     

     

     


    最新回复(0)