Eboot 中给nandflash分区实现

    技术2024-10-27  65

    提到分区就不得不提到MBR ,不得不提到分区表。

    什么是MBR

    硬盘的0 柱面、0 磁头、1 扇区称为主引导扇区,NANDFLASH 由BLOCK 和Sector 组成,所以NANDFLASH 的第0 BLOCK ,第1 Sector 为主引导扇区,FDISK 程序写到该扇区的内容称为主引导记录(MBR )。该记录占用512 个字节,它用于硬盘启动时将系统控制权交给用户指定的,并在分区表中登记了的某个操作系统区。

     

    MBR 的组成 一个扇区的硬盘主引导记录MBR 由如图6-15 所示的4 个部分组成。· 主引导程序(偏移地址0000H--0088H ),它负责从活动分区中装载,并运行系统引导程序。· 出错信息数据区,偏移地址0089H--00E1H 为出错信息,00E2H--01BDH 全为0 字节。· 分区表(DPT,Disk Partition Table )含4 个分区项,偏移地址01BEH--01FDH, 每个分区表项长16 个字节,共64 字节为分区项1 、分区项2 、分区项3 、分区项4 。· 结束标志字,偏移地址01FE--01FF 的2 个字节值为结束标志55AA, 如果该标志错误系统就不能启动。

    0000-0088

      Master Boot Record

    主引导程序 主引导

    程序 0089-01BD  出错信息数据区 数据区 01BE-01CD  分区项1 (16 字节) 

    分区表

      01CE-01DD  分区项2 (16 字节) 01DE-01ED  分区项3 (16 字节) 01EE-01FD  分区项4 (16 字节) 01FE  55  结束标志 01FF  AA  

    图6-15 MBR 的组成结构图

    MBR 中的分区信息结构

        占用512 个字节的MBR 中,偏移地址01BEH--01FDH 的64 个字节,为4 个分区项内容(分区信息表)。它是由磁盘介质类型及用户在使用 FDISK 定义分区说确定的。在实际应用中,FDISK 对一个磁盘划分的主分区可少于4 个,但最多不超过4 个。每个分区表的项目是16 个字节,其内容含义 如表6-19 所示。表6-19 分区项表(16 字节)内容及含义

     

    存贮字节位 内容及含义 第1 字节 引导标志。若值为80H 表示活动分区,若值为00H 表示非活动分区。 第2 、3 、4 字节 本分区的起始磁头号、扇区号、柱面号。其中:

        磁头号—— 第2 字节;

        扇区号—— 第3 字节的低6 位;

        柱面号—— 为第3 字节高2 位+ 第4 字节8 位。 第5 字节 分区类型符。

        00H—— 表示该分区未用(即没有指定);

        06H——FAT16 基本分区;

        0BH——FAT32 基本分区;

        05H—— 扩展分区;

        07H——NTFS 分区;

        0FH—— (LBA 模式)扩展分区(83H 为Linux 分区等)。 第6 、7 、8 字节 本分区的结束磁头号、扇区号、柱面号。其中:

        磁头号—— 第6 字节;

        扇区号—— 第7 字节的低6 位;

        柱面号—— 第7 字节的高2 位+ 第8 字节。 第9 、10 、11 、12 字节 本分区之前已用了的扇区数。 第13 、14 、15 、16 字节 本分区的总扇区数。 

     

    EBOOT 中对NAND 分区主要代码,eboot 目录下的fmd.cpp 文件,与NAND 驱动基本相同,所以,要对NAND 进行分区,就得对NAND 驱动非常熟悉。透彻了解。然后就是E:/WINCE500/PUBLIC/COMMON/OAK/DRIVERS/ETHDBG/BOOTPART/bootpart.cpp 文件了。该文件主要通过调用NANDFLASH 的读写操作来写入MBR ,也是今天主要的分析对象。

     

    主要函数。

     

    /*  BP_OpenPartition

     *

     *  Opens/creates a partition depending on the creation flags.  If it is opening

     *  and the partition has already been opened, then it returns a handle to the

     *  opened partition.  Otherwise, it loads the state information of that partition

     *  into memory and returns a handle. 

     *

     *  ENTRY

     *      dwStartSector - Logical sector to start the partition.  NEXT_FREE_LOC if none

     *          specified.  Ignored if opening existing partition.

     *      dwNumSectors - Number of logical sectors of the partition.  USE_REMAINING_SPACE

     *          to indicate to take up the rest of the space on the flash for that partition (should

     *          only be used when creating extended partitions).  This parameter is ignored

     *          if opening existing partition.

     *      dwPartType - Type of partition to create/open.

     *      fActive - TRUE indicates to create/open the active partition.  FALSE for

     *          inactive.

     *      dwCreationFlags - PART_CREATE_NEW to create only.  Fail if it already

     *          exists.  PART_OPEN_EXISTING to open only.  Fail if it doesn't exist.

     *          PART_OPEN_ALWAYS creates if it does not exist and opens if it

     *          does exist.

     *

     *  EXIT

     *      Handle to the partition on success.  INVALID_HANDLE_VALUE on error.

     */

    HANDLE BP_OpenPartition(DWORD dwStartSector, DWORD dwNumSectors, DWORD dwPartType, BOOL fActive, DWORD dwCreationFlags)

     

    注:示例代码为本人EBOOT 中分区实现源码(WINCE5.0+S3C2440+128MNAND,MBR写在第4个BLOCK,分一个BINFS格式分区和一个FAT 格式分区 )。

     

    BOOL WriteRegionsToBootMedia(DWORD dwImageStart, DWORD dwImageLength, DWORD dwLaunchAddr)

    在把SDRAM 中的NK 烧写到NAND 中去之前,先创建一个BINFS 分区。

    hPart = BP_OpenPartition( (NK_START_BLOCK+1)*PAGES_PER_BLOCK,  // next block of MBR     BINFS_BLOCK*PAGES_PER_BLOCK,//SECTOR_TO_BLOCK_SIZE(FILE_TO_SECTOR_SIZE(dwBINFSPartLength))*PAGES_PER_BLOCK,  //align to block

                                  PART_BINFS,

                                  TRUE,

                                  PART_OPEN_ALWAYS);

    第一个参数分区的起始sector 为(NK_START_BLOCK+1)*PAGES_PER_BLOCK ,

    第二个参数分区的结束 sector 为BINFS_BLOCK*PAGES_PER_BLOCK ,

    第三个参数分区的格式为PART_BINFS ,即BINFS 格式,

    第四个参数指示该分区为活动分区,fActive = TURE ,

    第五个参数PART_OPEN_ALWAYS 指示如果分区不存在就创建该分区,存在就OPEN 该分区,返回分区句柄。

     

    HANDLE BP_OpenPartition(DWORD dwStartSector, DWORD dwNumSectors, DWORD dwPartType, BOOL fActive, DWORD dwCreationFlags)

    {

            DWORD dwPartIndex;

            BOOL fExists;

     

            ASSERT (g_pbMBRSector);

           

            if (!IsValidMBR()) {

                DWORD dwFlags = 0;

              

                //fly

                 RETAILMSG(1, (TEXT("BP_OpenPartition:: dwStartSector=0x%x ,dwNumSectors= 0x%x.,dwPartType = 0x%x/r/n"), dwStartSector, dwNumSectors,dwPartType));

                if (dwCreationFlags == PART_OPEN_EXISTING) {

                    RETAILMSG(1, (TEXT("OpenPartition: Invalid MBR.  Cannot open existing partition 0x%x./r/n"), dwPartType));

                    return INVALID_HANDLE_VALUE;

                }

               

                RETAILMSG(1, (TEXT("OpenPartition: Invalid MBR.  Formatting flash./r/n")));

                if (g_FlashInfo.flashType == NOR) {

                    dwFlags |= FORMAT_SKIP_BLOCK_CHECK;

                }

                //fly

                 RETAILMSG(1, (TEXT("BP_LowLevelFormat: g_pbMBRSector=0x%x, g_dwMBRSectorNum= 0x%x./r/n"), *g_pbMBRSector, g_dwMBRSectorNum));

                BP_LowLevelFormat (SECTOR_TO_BLOCK(dwStartSector), SECTOR_TO_BLOCK(dwNumSectors), dwFlags);

                dwPartIndex = 0;

                fExists = FALSE;

            }

            else {

                fExists = GetPartitionTableIndex(dwPartType, fActive, &dwPartIndex);       

            }

     

            RETAILMSG(1, (TEXT("OpenPartition: Partition Exists=0x%x for part 0x%x./r/n"), fExists, dwPartType));

            if (fExists) {

                // Partition was found. 

                if (dwCreationFlags == PART_CREATE_NEW)

                    return INVALID_HANDLE_VALUE;

               

                if (g_partStateTable[dwPartIndex].pPartEntry == NULL) {

                    // Open partition.  If this is the boot section partition, then file pointer starts after MBR

                    g_partStateTable[dwPartIndex].pPartEntry = (PPARTENTRY)(g_pbMBRSector + PARTTABLE_OFFSET + sizeof(PARTENTRY)*dwPartIndex);

                    g_partStateTable[dwPartIndex].dwDataPointer = 0;

                } 

               if ( dwNumSectors > g_partStateTable[dwPartIndex].pPartEntry->Part_TotalSectors )

                  return CreatePartition (dwStartSector, dwNumSectors, dwPartType, fActive, dwPartIndex);

               else         

                       return (HANDLE)&g_partStateTable[dwPartIndex];           

            }

            else {

     

                // If there are already 4 partitions, or creation flag specified OPEN_EXISTING, fail.

                if ((dwPartIndex == NUM_PARTS) || (dwCreationFlags == PART_OPEN_EXISTING))

                    return INVALID_HANDLE_VALUE;

     

                // Create new partition

                return CreatePartition (dwStartSector, dwNumSectors, dwPartType, fActive, dwPartIndex);

            }

     

            return INVALID_HANDLE_VALUE;

           

    }

    进入函数,首先做的事就是检测MBR 的有效性。通过函数IsValidMBR ()实现。

    检测MBR 的有效性,首先要知道MBR 保存在哪里,前面说过NANDFLASH 的第0 BLOCK ,第1 Sector 为主引导扇区,也就是MBR ,但是NAND 如果被当作启动芯片,○地址一般被BOOTLOADER 代码占据,MBR 只有放在后面的BLOCK 中。所以我把第0 个BLOCK 放NBOOT ,第1 个BLOCK 放TOC ,第2 个BLOCK 放EBOOT ,第3 个BLOCK 保留,第4 个BLOCK 就放MBR 。

    static BOOL IsValidMBR()

    {

        // Check to see if the MBR is valid

        // MBR block is always located at logical sector 0

        g_dwMBRSectorNum = GetMBRSectorNum();       

     

        RETAILMSG (1, (TEXT("IsValidMBR: MBR sector = 0x%x/r/n"), g_dwMBRSectorNum));

      

        if ((g_dwMBRSectorNum == INVALID_ADDR) || !FMD_ReadSector (g_dwMBRSectorNum, g_pbMBRSector, NULL, 1)) {

           RETAILMSG (1, (TEXT("IsValidMBR-----return FALSE-------------------/r/n")));

            return FALSE; 

        }   

        return ((g_pbMBRSector[0] == 0xE9) &&

             (g_pbMBRSector[1] == 0xfd) &&

             (g_pbMBRSector[2] == 0xff) &&

             (g_pbMBRSector[SECTOR_SIZE_FS-2] == 0x55) &&

             (g_pbMBRSector[SECTOR_SIZE_FS-1] == 0xAA));

    IsValidMBR() 实现的第一行就是给全局变量g_dwMBRSectorNum 赋值,显而易见,g_dwMBRSectorNum 就是指示保存MBR 的那个Sector 了。

    g_dwMBRSectorNum = GetMBRSectorNum();   // 是获得保存MBR 的那个Sector

    static DWORD GetMBRSectorNum ()

    {

        DWORD dwBlockNum = 3, dwSector = 0;

        SectorInfo si;

           

        while (dwBlockNum < g_FlashInfo.dwNumBlocks) {

     

            if (!IS_BLOCK_UNUSABLE (dwBlockNum)) {

                dwSector = dwBlockNum * g_FlashInfo.wSectorsPerBlock;

               

                if (!FMD_ReadSector (dwSector, NULL, &si, 1)) {

                    RETAILMSG(1, (TEXT("GetMBRSectorNum: Could not read sector 0x%x./r/n"), dwSector));

                    return INVALID_ADDR;

                }

                // Check to see if logical sector number is 0

                if (si.dwReserved1 == 0) {

                  //RETAILMSG(1,(TEXT("dwBlockNum=%d/r/n"),dwBlockNum));

                    return dwSector;

                }

            }

     

            dwBlockNum++;

     

        }

     

        return INVALID_ADDR;

    }

    这里dwBlockNum 直接给了个3 ,因为NBOOT ,TOC ,EBOOT 已经把前三个BLOCK 用了。所以MBR 的选择直接排除了前三个BLOCK 了。

    #define IS_BLOCK_UNUSABLE(blockID) ((FMD_GetBlockStatus (blockID) & (BLOCK_STATUS_BAD|BLOCK_STATUS_RESERVED)) > 0)

    然后确定BLOCK 是否可使用的BLOCK ,最后通si.dwReserved1 == 0 来判断是不是选择这个Sector 来保存MBR 。

    IsValidMBR ()中还有一个重要的结构就是g_pbMBRSector 数组,它就是MBR 了。

    函数返回时,MBR 必须符合下列记录。

        return ((g_pbMBRSector[0] == 0xE9) &&

             (g_pbMBRSector[1] == 0xfd) &&

             (g_pbMBRSector[2] == 0xff) &&

             (g_pbMBRSector[SECTOR_SIZE_FS-2] == 0x55) &&

             (g_pbMBRSector[SECTOR_SIZE_FS-1] == 0xAA));

    可以看到只有开始三个字节为0XE9,FD,FF ,当然,还有熟悉的结束标志符0X55AA 。

     

    如果没有检测到MBR ,则先对NANDFLASH 进行低级格式化。BP_LowLevelFormat (SECTOR_TO_BLOCK(dwStartSector), SECTOR_TO_BLOCK(dwNumSectors), dwFlags); 再创建分区,CreatePartition (dwStartSector, dwNumSectors, dwPartType, fActive, dwPartIndex); 。

     

    BOOL BP_LowLevelFormat(DWORD dwStartBlock, DWORD dwNumBlocks, DWORD dwFlags)

    {

        dwNumBlocks = min (dwNumBlocks, g_FlashInfo.dwNumBlocks);

     

        RETAILMSG(1,(TEXT("fly::Enter LowLevelFormat [0x%x, 0x%x]./r/n"), dwStartBlock,dwNumBlocks));// dwStartBlock + dwNumBlocks - 1));

     

        // Erase all the flash blocks.

        if (!EraseBlocks(dwStartBlock, dwNumBlocks, dwFlags))

            return(FALSE);

     

        // Determine first good starting block

        while (IS_BLOCK_UNUSABLE (dwStartBlock) && dwStartBlock < g_FlashInfo.dwNumBlocks) {

            dwStartBlock++;

        }

     

        if (dwStartBlock >= g_FlashInfo.dwNumBlocks) {

            RETAILMSG(1,(TEXT("BP_LowLevelFormat: no good blocks/r/n")));       

            return FALSE;

        }

     

        // MBR goes in the first sector of the starting block.  This will be logical sector 0.

        g_dwMBRSectorNum = dwStartBlock * g_FlashInfo.wSectorsPerBlock;

     

        RETAILMSG(1,(TEXT("fly:g_dwMBRSectorNum=%d/r/n"),g_dwMBRSectorNum));

     

        // Create an MBR.

        CreateMBR();

        return(TRUE);

    }

    在对NANDFLASH 进行低格时,主要对坏块的处理。if (!EraseBlocks(dwStartBlock, dwNumBlocks, dwFlags)) 检测每一个Sector ,每个BLOCK 只要有一个Sector 不能读写这个块都会被处理成坏块,这样才能保证系统的稳定性。在函数的最后调用了    CreateMBR(); 来创建一个MBR 。static BOOL CreateMBR()

    {

        // This, plus a valid partition table, is all the CE partition manager needs to recognize

        // the MBR as valid. It does not contain boot code.

     

        memset (g_pbMBRSector, 0xff, g_FlashInfo.wDataBytesPerSector);

        g_pbMBRSector[0] = 0xE9;

        g_pbMBRSector[1] = 0xfd;

        g_pbMBRSector[2] = 0xff;

        g_pbMBRSector[SECTOR_SIZE_FS-2] = 0x55;

        g_pbMBRSector[SECTOR_SIZE_FS-1] = 0xAA;

     

        // Zero out partition table so that mspart treats entries as empty.

        memset (g_pbMBRSector+PARTTABLE_OFFSET, 0, sizeof(PARTENTRY) * NUM_PARTS);

     

        return WriteMBR();

     

    }  当然。因为还没有进行分区,这里写入的MBR 分区表部分是空的。static BOOL WriteMBR()

    {

        DWORD dwMBRBlockNum = g_dwMBRSectorNum / g_FlashInfo.wSectorsPerBlock;

     

        //dwMBRBlockNum = 1 ;

     

        RETAILMSG(1, (TEXT("WriteMBR: MBR block = 0x%x,g_dwMBRSectorNum = 0x%x./r/n"), dwMBRBlockNum,g_dwMBRSectorNum));

     

        memset (g_pbBlock, 0xff, g_dwDataBytesPerBlock);

        memset (g_pSectorInfoBuf, 0xff, sizeof(SectorInfo) * g_FlashInfo.wSectorsPerBlock);

           

        // No need to check return, since a failed read means data hasn't been written yet.

        ReadBlock (dwMBRBlockNum, g_pbBlock, g_pSectorInfoBuf);

     

        if (!FMD_EraseBlock (dwMBRBlockNum)) {

            RETAILMSG (1, (TEXT("CreatePartition: error erasing block 0x%x/r/n"), dwMBRBlockNum));

            return FALSE;

        }

     

        memcpy (g_pbBlock + (g_dwMBRSectorNum % g_FlashInfo.wSectorsPerBlock) * g_FlashInfo.wDataBytesPerSector, g_pbMBRSector, g_FlashInfo.wDataBytesPerSector);

        g_pSectorInfoBuf->bOEMReserved &= ~OEM_BLOCK_READONLY;

        g_pSectorInfoBuf->wReserved2 &= ~SECTOR_WRITE_COMPLETED;

        g_pSectorInfoBuf->dwReserved1 = 0;

     

        RETAILMSG(1, (TEXT("fly::WriteMBR: MBR block = 0x%x./r/n"), dwMBRBlockNum));

     

        if (!WriteBlock (dwMBRBlockNum, g_pbBlock, g_pSectorInfoBuf)) {

            RETAILMSG (1, (TEXT("CreatePartition: could not write to block 0x%x/r/n"), dwMBRBlockNum));

            return FALSE;

        }

     

        return TRUE;

       

    }

    在WriteMBR() 函数中,就写入了判断MBR 的一些标志到BLOCK ,    g_pSectorInfoBuf->bOEMReserved &= ~OEM_BLOCK_READONLY;

        g_pSectorInfoBuf->wReserved2 &= ~SECTOR_WRITE_COMPLETED;

        g_pSectorInfoBuf->dwReserved1 = 0;

    Wince 系统启动时,具体是NANDFLASH 驱动加载成功后,MOUNT 文件系统到NANDFLASH 之前,也会通过读取这些SectorInfo 来得到MBR 保存的BLOCK ,进而读取MBR ,获得分区信息,从而把各分区MOUNT 到相应文件系统。格式化完成,MBR 也写入成功后就可以开始新建分区了。

    /*  CreatePartition

     *

     *  Creates a new partition.  If it is a boot section partition, then it formats

     *  flash.

     *

     *  ENTRY

     *      dwStartSector - Logical sector to start the partition.  NEXT_FREE_LOC if 

     *          none specified. 

     *      dwNumSectors - Number of logical sectors of the partition.  USE_REMAINING_SPACE

     *          to indicate to take up the rest of the space on the flash for that partition.

     *      dwPartType - Type of partition to create.

     *      fActive - TRUE indicates to create the active partition.  FALSE for

     *          inactive.

     *      dwPartIndex - Index of the partition entry on the MBR

     *

     *  EXIT

     *      Handle to the partition on success.  INVALID_HANDLE_VALUE on error.

     */

     

    static HANDLE CreatePartition (DWORD dwStartSector, DWORD dwNumSectors, DWORD dwPartType, BOOL fActive, DWORD dwPartIndex)

    {

        DWORD dwBootInd = 0;

     

        RETAILMSG(1, (TEXT("CreatePartition: Enter CreatePartition for 0x%x./r/n"), dwPartType));

       

        if (fActive)

            dwBootInd |= PART_IND_ACTIVE;

        if (dwPartType == PART_BOOTSECTION || dwPartType == PART_BINFS || dwPartType == PART_XIP)

            dwBootInd |= PART_IND_READ_ONLY;   

     

         // If start sector is invalid, it means find next free sector

        if (dwStartSector == NEXT_FREE_LOC) {       

            dwStartSector = FindFreeSector();

            if (dwStartSector == INVALID_ADDR) {

                RETAILMSG(1, (TEXT("CreatePartition: can't find free sector./r/n")));

                return INVALID_HANDLE_VALUE;

            }

     

            // Start extended partition on a block boundary

            if ((dwPartType == PART_EXTENDED) && (dwStartSector % g_FlashInfo.wSectorsPerBlock)) {

                dwStartSector = (dwStartSector / g_FlashInfo.wSectorsPerBlock + 1) * g_FlashInfo.wSectorsPerBlock;

            }

        }

     

        // If num sectors is invalid, fill the rest of the space up

        if (dwNumSectors == USE_REMAINING_SPACE) {

     

            DWORD dwLastLogSector = LastLogSector();

            if (dwLastLogSector == INVALID_ADDR)

                return INVALID_HANDLE_VALUE;

     

            // Determine the number of blocks to reserve for the FAL compaction when creating an extended partition.

            DWORD dwReservedBlocks = g_FlashInfo.dwNumBlocks / PERCENTAGE_OF_MEDIA_TO_RESERVE;

            if((dwReservedBlocks = g_FlashInfo.dwNumBlocks / PERCENTAGE_OF_MEDIA_TO_RESERVE) < MINIMUM_FLASH_BLOCKS_TO_RESERVE) {

                dwReservedBlocks = MINIMUM_FLASH_BLOCKS_TO_RESERVE;

            }

           

            dwNumSectors = dwLastLogSector - dwStartSector + 1 - dwReservedBlocks * g_FlashInfo.wSectorsPerBlock;

        }

      

        if (!AreSectorsFree (dwStartSector, dwNumSectors)){

            RETAILMSG (1, (TEXT("fly:::::CreatePartition: sectors [0x%x, 0x%x] requested are out of range or taken by another partition/r/n"), dwStartSector, dwNumSectors));

            return INVALID_HANDLE_VALUE;

        }

     

        RETAILMSG(1, (TEXT("CreatePartition: Start = 0x%x, Num = 0x%x./r/n"), dwStartSector, dwNumSectors));

       

        AddPartitionTableEntry (dwPartIndex, dwStartSector, dwNumSectors, (BYTE)dwPartType, (BYTE)dwBootInd);

     

        if (dwBootInd & PART_IND_READ_ONLY) {

            if (!WriteLogicalNumbers (dwStartSector, dwNumSectors, TRUE)) {

                RETAILMSG(1, (TEXT("CreatePartition: can't mark sector info./r/n")));

                return INVALID_HANDLE_VALUE;

            }

        }

     

        if (!WriteMBR())

            return INVALID_HANDLE_VALUE;

     

        g_partStateTable[dwPartIndex].pPartEntry = (PPARTENTRY)(g_pbMBRSector + PARTTABLE_OFFSET + sizeof(PARTENTRY)*dwPartIndex);

        g_partStateTable[dwPartIndex].dwDataPointer = 0;

     

        return (HANDLE)&g_partStateTable[dwPartIndex];           

    }

    如果第二个参数为-1 ,则视为将余下的所有空间划为一个分区。LastLogSector(); 函数获得最后一个逻辑Sector 。static DWORD LastLogSector()

    {

        if (g_dwLastLogSector) {

           return g_dwLastLogSector;

        }

     

        DWORD dwMBRBlock = g_dwMBRSectorNum / g_FlashInfo.wSectorsPerBlock;

        DWORD dwUnusableBlocks = dwMBRBlock;

     

        for (DWORD i = dwMBRBlock; i < g_FlashInfo.dwNumBlocks; i++) {

            if (IS_BLOCK_UNUSABLE (i))

                dwUnusableBlocks++;

        }

       

        g_dwLastLogSector = (g_FlashInfo.dwNumBlocks - dwUnusableBlocks) * g_FlashInfo.wSectorsPerBlock - 1;

     

        RETAILMSG(1, (TEXT("fly:::LastLogSector: Last log sector is: 0x%x./r/n"), g_dwLastLogSector));

       

        return g_dwLastLogSector;

    }

    即g_dwLastLogSector = (g_FlashInfo.dwNumBlocks - dwUnusableBlocks) * g_FlashInfo.wSectorsPerBlock - 1;// (NAND 的BLOCK 总数 – MBR 保存的那个BLOCK )* 每个BLOCK 的Sector 数 – 保存MBR 的那个Sector 。得到的就是从MBR 那个Sector 之后的所有Sector ,即逻辑大小。

    AreSectorsFree (dwStartSector, dwNumSectors) 函数判断参数提供的起始Sector 和个数有没有超出来NAND 的界限,或者逻辑分区的界限。   

    重头戏开始了。通过AddPartitionTableEntry (dwPartIndex, dwStartSector, dwNumSectors, (BYTE)dwPartType, (BYTE)dwBootInd); 准备分区信息写入分区表。

    /*  AddPartitionTableEntry

     *

     *  Generates the partition entry for the partition table and copies the entry

     *  into the MBR that is stored in memory.

     * 

     *

     *  ENTRY

     *      entry - index into partition table

     *      startSector - starting logical sector

     *      totalSectors - total logical sectors

     *      fileSystem - type of partition

     *      bootInd - byte in partition entry that stores various flags such as

     *          active and read-only status.

     *

     *  EXIT

     */

     

    static void AddPartitionTableEntry(DWORD entry, DWORD startSector, DWORD totalSectors, BYTE fileSystem, BYTE bootInd)

    {

        PARTENTRY partentry = {0};

        Addr startAddr;

        Addr endAddr;

     

        ASSERT(entry < 4);

     

        // no checking with disk info and start/total sectors because we allow

        // bogus partitions for testing purposes

     

        // initially known partition table entry

        partentry.Part_BootInd = bootInd;

        partentry.Part_FileSystem = fileSystem;

        partentry.Part_StartSector = startSector;

        partentry.Part_TotalSectors = totalSectors;

     

        // logical block addresses for the first and final sector (start on the second head)

        startAddr.type = LBA;

        startAddr.lba = partentry.Part_StartSector;

        endAddr.type = LBA;

        endAddr.lba = partentry.Part_StartSector + partentry.Part_TotalSectors-1;

     

        // translate the LBA addresses to CHS addresses

        startAddr = LBAtoCHS(&g_FlashInfo, startAddr);

        endAddr = LBAtoCHS(&g_FlashInfo, endAddr);

     

        // starting address

        partentry.Part_FirstTrack = (BYTE)(startAddr.chs.cylinder & 0xFF);

        partentry.Part_FirstHead = (BYTE)(startAddr.chs.head & 0xFF);

        // lower 6-bits == sector, upper 2-bits = cylinder upper 2-bits of 10-bit cylinder #

        partentry.Part_FirstSector = (BYTE)((startAddr.chs.sector & 0x3F) | ((startAddr.chs.cylinder & 0x0300) >> 2));

     

        // ending address:

        partentry.Part_LastTrack = (BYTE)(endAddr.chs.cylinder & 0xFF);

        partentry.Part_LastHead = (BYTE)(endAddr.chs.head & 0xFF);

        // lower 6-bits == sector, upper 2-bits = cylinder upper 2-bits of 10-bit cylinder #

        partentry.Part_LastSector = (BYTE)((endAddr.chs.sector & 0x3F) | ((endAddr.chs.cylinder & 0x0300) >> 2));

     

        memcpy(g_pbMBRSector+PARTTABLE_OFFSET+(sizeof(PARTENTRY)*entry), &partentry, sizeof(PARTENTRY));

    }

    这里面的地址信息是一种叫CHS(Cyinder/Head/Sector) 的地址。eboot 中有将逻辑地址LBS(Logical Block Addr) 与这种地址互相转换的函数LBAtoCHS,CHSToLBA 。Addr LBAtoCHS(FlashInfo *pFlashInfo, Addr lba){    Addr chs;    DWORD tmp = pFlashInfo->dwNumBlocks * pFlashInfo->wSectorsPerBlock;

        chs.type = CHS;    chs.chs.cylinder = (WORD)(lba.lba / tmp);                                      // 柱面, 应该始终是0    tmp = lba.lba % tmp;    chs.chs.head = (WORD)(tmp / pFlashInfo->wSectorsPerBlock);                     // 块地址    chs.chs.sector = (WORD)((tmp % pFlashInfo->wSectorsPerBlock) + 1);     // 扇区+1

        return chs;}

    Addr CHStoLBA(FlashInfo *pFlashInfo, Addr chs){    Addr lba;

        lba.type = LBA;    lba.lba = ((chs.chs.cylinder * pFlashInfo->dwNumBlocks + chs.chs.head)        * pFlashInfo->wSectorsPerBlock)+ chs.chs.sector - 1;

    return lba;}

    如果分区的格式有只读属性,则通过WriteLogicalNumbers ()函数写分区的Sectorinfo ,把这部分空间保护起来。

    static BOOL WriteLogicalNumbers (DWORD dwStartSector, DWORD dwNumSectors, BOOL fReadOnly)

    {

        DWORD dwNumSectorsWritten = 0;

     

        DWORD dwPhysSector = Log2Phys (dwStartSector);

        DWORD dwBlockNum = dwPhysSector / g_FlashInfo.wSectorsPerBlock;

        DWORD dwOffset = dwPhysSector % g_FlashInfo.wSectorsPerBlock;

       

        while (dwNumSectorsWritten < dwNumSectors) {

     

            // If bad block, move to the next block

            if (IS_BLOCK_UNUSABLE (dwBlockNum)) {

                dwBlockNum++;

                continue;

            }

     

            memset (g_pbBlock, 0xff, g_dwDataBytesPerBlock);

            memset (g_pSectorInfoBuf, 0xff, sizeof(SectorInfo) * g_FlashInfo.wSectorsPerBlock);

            // No need to check return, since a failed read means data hasn't been written yet.

            ReadBlock (dwBlockNum, g_pbBlock, g_pSectorInfoBuf);

            if (!FMD_EraseBlock (dwBlockNum)) {

                return FALSE;

            }

     

            DWORD dwSectorsToWrite = g_FlashInfo.wSectorsPerBlock - dwOffset;

            PSectorInfo pSectorInfo = g_pSectorInfoBuf + dwOffset;

     

            // If this is the last block, then calculate sectors to write if there isn't a full block to update

            if ((dwSectorsToWrite + dwNumSectorsWritten) > dwNumSectors)

                dwSectorsToWrite = dwNumSectors - dwNumSectorsWritten;

            

            for (DWORD iSector = 0; iSector < dwSectorsToWrite; iSector++, pSectorInfo++, dwNumSectorsWritten++) {

                // Assert read only by setting bit to 0 to prevent wear-leveling by FAL

                if (fReadOnly)

                    pSectorInfo->bOEMReserved &= ~OEM_BLOCK_READONLY;

                // Set to write completed so FAL can map the sector 

                pSectorInfo->wReserved2 &= ~SECTOR_WRITE_COMPLETED;       

                // Write the logical sector number

                pSectorInfo->dwReserved1 = dwStartSector + dwNumSectorsWritten;           

            }

            if (!WriteBlock (dwBlockNum, g_pbBlock, g_pSectorInfoBuf))

                return FALSE;

           

            dwOffset = 0;

            dwBlockNum++;

        }

        return TRUE;

    }

    这就是为什么系统启动后,我们无法写入文件的BINFS 文件系统格式分区的原因了。而FAT 格式就可以。最后调用WriteMBR() 完全MBR 的写入,分区完毕。

    让我们继续回到BP_OpenPartition 函数中,如果从一开始IsValidMBR() 就检测到有效的MBR ,GetPartitionTableIndex(dwPartType, fActive, &dwPartIndex); 获得分区表。和dwPartIndex 分区表的索引号。

    static BOOL GetPartitionTableIndex (DWORD dwPartType, BOOL fActive, PDWORD pdwIndex)

    {

        PPARTENTRY pPartEntry = (PPARTENTRY)(g_pbMBRSector + PARTTABLE_OFFSET);

        DWORD iEntry = 0;

       

        for (iEntry = 0; iEntry < NUM_PARTS; iEntry++, pPartEntry++) {

            if ((pPartEntry->Part_FileSystem == dwPartType) && (((pPartEntry->Part_BootInd & PART_IND_ACTIVE) != 0) == fActive)) {

                *pdwIndex = iEntry;

                return TRUE;

            }

            if (!IsValidPart (pPartEntry)) {

                *pdwIndex = iEntry;

                return FALSE;

            }

        }

     

        return FALSE;

    }

     

    重要结构:PARTENTRY

    // end of master boot record contains 4 partition entries

    typedef struct _PARTENTRY {

            BYTE            Part_BootInd;           // If 80h means this is boot partition

            BYTE            Part_FirstHead;         // Partition starting head based 0

            BYTE            Part_FirstSector;       // Partition starting sector based 1

            BYTE            Part_FirstTrack;        // Partition starting track based 0

            BYTE            Part_FileSystem;        // Partition type signature field

            BYTE            Part_LastHead;          // Partition ending head based 0

            BYTE            Part_LastSector;        // Partition ending sector based 1

            BYTE            Part_LastTrack;         // Partition ending track based 0

            DWORD           Part_StartSector;       // Logical starting sector based 0

            DWORD           Part_TotalSectors;      // Total logical sectors in partition

    } PARTENTRY;

    分区表就是通过这个结构写入MBR ,起始地址,分区大小,分区格式,对应结构写入MBR 所在的Sector 就可以了。在检测有效分区时static BOOL IsValidPart (PPARTENTRY pPartEntry)

    {

        return (pPartEntry->Part_FileSystem != 0xff) && (pPartEntry->Part_FileSystem != 0);

    }

    就是通过对分区表文件系统格式的判断了。

     

     

    把NAND 后面的空间,全部分为一个FAT 格式的分区。

        //

        // create extended partition in whatever is left

        //

        hPartEx = BP_OpenPartition( (NK_START_BLOCK+1+BINFS_BLOCK) * PAGES_PER_BLOCK,

                                    NEXT_FREE_LOC,   // (1024 - (NK_START_BLOCK+1+SECTOR_TO_BLOCK_SIZE(FILE_TO_SECTOR_SIZE(dwBINFSPartLength)))) * PAGES_PER_BLOCK,

                                    PART_DOS32,

                                    TRUE,

                                    PART_OPEN_ALWAYS);

     

        if (hPartEx == INVALID_HANDLE_VALUE )

        {

            EdbgOutputDebugString("*** WARN: StoreImageToBootMedia: Failed to open/create Extended partition ***/r/n");

        }

     

    本文来自博客,转载请标明出处:http://blog.csdn.net/wu_ye_zhou/archive/2010/06/12/5667136.aspx

    最新回复(0)