uclinux内核的console

    技术2025-02-17  14

     

    快乐虾

    http://blog.csdn.net/lights_joy/

    lights@hb165.com

    本文适用于

    ADI bf561 DSP

    优视BF561EVB开发板

    uclinux-2008r1.5-rc3 (smp patch)

    Visual DSP++ 5.0 (update 5)

     

     

    欢迎转载,但请保留作者信息

    内核中与console相关的结构体可以分为通用定义与不同体系结构的定义两部分,通用定义与具体的硬件无关,它只是定义了一类硬件的通用参数与接口,不同的体系结构下还需要加上一些特有的东西。

    1.1    串口通用定义1.1.1   uart_ops这个结构体的定义位于include/linux/serial_core.h,它定义了UART要实现的操作:

    /*

     * This structure describes all the operations that can be

     * done on the physical hardware.

     */

    struct uart_ops {

         unsigned int  (*tx_empty)(struct uart_port *);

         void     (*set_mctrl)(struct uart_port *, unsigned int mctrl);

         unsigned int  (*get_mctrl)(struct uart_port *);

         void     (*stop_tx)(struct uart_port *);

         void     (*start_tx)(struct uart_port *);

         void     (*send_xchar)(struct uart_port *, char ch);

         void     (*stop_rx)(struct uart_port *);

         void     (*enable_ms)(struct uart_port *);

         void     (*break_ctl)(struct uart_port *, int ctl);

         int      (*startup)(struct uart_port *);

         void     (*shutdown)(struct uart_port *);

         void     (*set_termios)(struct uart_port *, struct ktermios *new,

                              struct ktermios *old);

         void     (*pm)(struct uart_port *, unsigned int state,

                        unsigned int oldstate);

         int      (*set_wake)(struct uart_port *, unsigned int state);

     

         /*

          * Return a string describing the type of the port

          */

         const char *(*type)(struct uart_port *);

     

         /*

          * Release IO and memory resources used by the port.

          * This includes iounmap if necessary.

          */

         void     (*release_port)(struct uart_port *);

     

         /*

          * Request IO and memory resources used by the port.

          * This includes iomapping the port if necessary.

          */

         int      (*request_port)(struct uart_port *);

         void     (*config_port)(struct uart_port *, int);

         int      (*verify_port)(struct uart_port *, struct serial_struct *);

         int      (*ioctl)(struct uart_port *, unsigned int, unsigned long);

    };

     

    1.1.2   uart_port这个结构体的定义位于include/linux/serial_core.h,从它的位置可以看出,这是一个与具体硬件无关的结构体,它提供了对UART的描述信息,对于某个具体的UART,可能只使用其中的某些字段。

    struct uart_port {

         spinlock_t         lock;              /* port lock */

         unsigned int       iobase;            /* in/out[bwl] */

         unsigned char __iomem  *membase;     /* read/write[bwl] */

         unsigned int       irq;          /* irq number */

         unsigned int       uartclk;      /* base uart clock */

         unsigned int       fifosize;     /* tx fifo size */

         unsigned char      x_char;            /* xon/xoff char */

         unsigned char      regshift;     /* reg offset shift */

         unsigned char      iotype;            /* io access style */

         unsigned char      unused1;

     

         unsigned int       read_status_mask;  /* driver specific */

         unsigned int       ignore_status_mask;    /* driver specific */

         struct uart_info   *info;             /* pointer to parent info */

         struct uart_icount icount;            /* statistics */

     

         struct console         *cons;             /* struct console, if any */

     

         upf_t              flags;

     

         unsigned int       mctrl;             /* current modem ctrl settings */

         unsigned int       timeout;      /* character-based timeout */

         unsigned int       type;              /* port type */

         const struct uart_ops  *ops;

         unsigned int       custom_divisor;

         unsigned int       line;              /* port index */

         unsigned long      mapbase;      /* for ioremap */

         struct device      *dev;              /* parent device */

         unsigned char      hub6;              /* this should be in the 8250 driver */

         unsigned char      unused[3];

         void          *private_data;         /* generic platform data pointer */

    };

    在内核中,没有为uart_port定义独立的变量,它将从属于某个具体的serial_port,对于bf561,它将从属于bfin_serial_port这一结构体。

    实际上内核只使用了以下几个成员:

    l         uartclk:这个值将设置为BF561的系统时钟频率,在我的系统中,它将为99M。

    l         ops:定义对UART的操作函数,指向bfin_serial_pops这一变量。

    l         line:串口序号,只有一个串口,恒为0。

    l         iotype:取UPIO_MEM,即直接寄存器访问方式。

    l         membase:指向UART_THR(0xFFC0 0400),即UART的发送寄存器。

    l         mapbase:与membase相同。

    l         irq:内核中中断描述数组(irq_desc)的序号,指UART接收中断(IRQ_UART_RX)。

    l         flags:配置为UPF_BOOT_AUTOCONF。

     

     

    1.2    不同体系结构下的串口定义1.2.1   bfin_serial_port这个结构体的定义在include/asm/mach/bfin-serial-5xx.h中:

    struct bfin_serial_port {

            struct uart_port        port;

            unsigned int            old_status;

             unsigned int lsr;

    #ifdef CONFIG_SERIAL_BFIN_DMA

         int           tx_done;

         int           tx_count;

         struct circ_buf        rx_dma_buf;

         struct timer_list       rx_dma_timer;

         int           rx_dma_nrows;

         unsigned int       tx_dma_channel;

         unsigned int       rx_dma_channel;

         struct work_struct tx_dma_workqueue;

    #endif

    };

    此结构体在uart_port的基础上,扩充了几个成员。

    在内核中,有这样的定义:

    struct bfin_serial_port bfin_serial_ports[NR_PORTS];

    在这里,NR_PORTS的值为1,对UART的所有操作都将通过这一变量来完成。

    需要注意的是rx_dma_timer这个成员,在串口初始化的时候,它将调用

             init_timer(&(bfin_serial_ports[i].rx_dma_timer));

    向内核注册一个时钟源。

    1.3    console这个结构体的定义在include/linux/console.h中,它定义了一个console驱动需要提供的信息及其必须实现的一些操作:

    /*

     * The interface for a console, or any other device that wants to capture

     * console messages (printer driver?)

     *

     * If a console driver is marked CON_BOOT then it will be auto-unregistered

     * when the first real console is registered.  This is for early-printk drivers.

     */

     

    struct console {

         char name[16];

         void (*write)(struct console *, const char *, unsigned);

         int  (*read)(struct console *, char *, unsigned);

         struct tty_driver *(*device)(struct console *, int *);

         void (*unblank)(void);

         int  (*setup)(struct console *, char *);

         short    flags;

         short    index;

         int  cflag;

         void *data;

         struct   console *next;

    };

    在内核中,对此结构体初始化为:

    static struct console bfin_serial_console = {

         .name         = BFIN_SERIAL_NAME,   // 即”ttyBF”

         .write        = bfin_serial_console_write,

         .device       = uart_console_device,

         .setup        = bfin_serial_console_setup,

         .flags        = CON_PRINTBUFFER,

         .index        = -1,

         .data         = &bfin_serial_reg,

    };

    而console中的cflag则保存了串口配置,如CREAD | HUPCL | CLOCAL | B57600 | CS8,使用它即可知道当前的串口配置。

    flags的值在初始化完成后则变成了CON_PRINTBUFFER | CON_ENABLED | CON_CONSDEV。

    index的值在初始化完成后变成0,因为只使用serial console。

    这里值得注意的是setup回调函数,当console初始化时,它需要初始化与此console相关的硬件,此时它将调用setup这一回调函数来完成此工作。

    1.4    ktermios这个结构体用于定义一个终端需要使用的参数:

    struct ktermios {

         tcflag_t c_iflag;               /* input mode flags */

         tcflag_t c_oflag;               /* output mode flags */

         tcflag_t c_cflag;               /* control mode flags */

         tcflag_t c_lflag;               /* local mode flags */

         cc_t c_line;                    /* line discipline */

         cc_t c_cc[NCCS];                /* control characters */

         speed_t c_ispeed;               /* input speed */

         speed_t c_ospeed;               /* output speed */

    };

    它并没有定义相关的结构体,仅仅用于向bfin_serial_set_termios传递参数。

    几个比较重要的值:

    c_cflag:串口的波特率、校验位、字长这几个参数都通过这个标志来传递。

     

    1       参考资料

    本文来自博客,转载请标明出处:http://blog.csdn.net/lights_joy/archive/2009/01/31/3855503.aspx

     

    在内核启动初期,为了尽可能早地输出一些调试信息,可以在配置时选择使用early console,其选项为CONFIG_EARLY_PRINTK,然后通过earlyprintk=??传递一个参数进去。当内核检测到earlyprintk这一参数时,它将调用setup_early_printk函数初始化BF561内部的UART,然后注册一个console,这样printk的信息就可以通过串口输出。earlyprintk参数的分析参见《uclinux内核参数处理(5):earlyprintk》。

    1.1    全局变量1.1.1   bfin_serial_pops这个全局变量用以指定对bf561内部串口进行操作的一些回调函数,其定义为:

    static struct uart_ops bfin_serial_pops = {

         .tx_empty = bfin_serial_tx_empty,

         .set_mctrl    = bfin_serial_set_mctrl,

         .get_mctrl    = bfin_serial_get_mctrl,

         .stop_tx = bfin_serial_stop_tx,

         .start_tx = bfin_serial_start_tx,

         .stop_rx = bfin_serial_stop_rx,

         .enable_ms    = bfin_serial_enable_ms,

         .break_ctl    = bfin_serial_break_ctl,

         .startup = bfin_serial_startup,

         .shutdown = bfin_serial_shutdown,

         .set_termios  = bfin_serial_set_termios,

         .type         = bfin_serial_type,

         .release_port = bfin_serial_release_port,

         .request_port = bfin_serial_request_port,

         .config_port  = bfin_serial_config_port,

         .verify_port  = bfin_serial_verify_port,

    };

     

     

    1.1.2   bfin_serial_ports这个全局变量的定义为:

    struct bfin_serial_port bfin_serial_ports[NR_PORTS];

    在这里NR_PORTS的值为1。

    这个全局变量的初始化由bfin_serial_init_ports函数完成,经过此函数的初始化后,此变量的值为:

    struct bfin_serial_port {

            struct uart_port        port;

    struct uart_port {

         spinlock_t         lock;              /* port lock */

         unsigned int       iobase;            /* in/out[bwl] */

         unsigned char __iomem  *membase;     /*指向UART_THR(0xFFC0 0400),即UART的发送寄存器。 */

         unsigned int       irq;          /* 取IRQ_UART_RX */

         unsigned int       uartclk;      /* 取SCLK */

         unsigned int       fifosize;     /* tx fifo size */

         unsigned char      x_char;            /* xon/xoff char */

         unsigned char      regshift;     /* reg offset shift */

         unsigned char      iotype;            /* UPIO_MEM,以直接寄存器访问方式进行操作 */

         unsigned char      unused1;

     

         unsigned int       read_status_mask;  /* driver specific */

         unsigned int       ignore_status_mask;    /* driver specific */

         struct uart_info   *info;             /* pointer to parent info */

         struct uart_icount icount;            /* statistics */

     

         struct console         *cons;             /* struct console, if any */

     

         upf_t              flags;     /* 取UPF_BOOT_AUTOCONF */

     

         unsigned int       mctrl;             /* current modem ctrl settings */

         unsigned int       timeout;      /* character-based timeout */

         unsigned int       type;              /* port type */

         const struct uart_ops  *ops;         /* 指向bfin_serial_pops */

         unsigned int       custom_divisor;

         unsigned int       line;              /* 串口序号,取0 */

         unsigned long      mapbase;      /*指向UART_THR(0xFFC0 0400),即UART的发送寄存器。 */

         struct device      *dev;              /* parent device */

         unsigned char      hub6;              /* this should be in the 8250 driver */

         unsigned char      unused[3];

         void          *private_data;         /* generic platform data pointer */

    };

     

            unsigned int            old_status;

             unsigned int lsr;

    #ifdef CONFIG_SERIAL_BFIN_DMA

         int           tx_done;           /* 初始化为1 */

         int           tx_count;          /* 初始化为0 */

         struct circ_buf        rx_dma_buf;

         struct timer_list       rx_dma_timer;

         int           rx_dma_nrows;

         unsigned int       tx_dma_channel;  /* 取18,即CH_UART_TX */

         unsigned int       rx_dma_channel;  /* 取17,即CH_UART_RX */

         struct work_struct tx_dma_workqueue;

    #endif

    };

     

    1.1.3   bfin_early_serial_console这个就是得以使用的early console的全局变量,其定义为:

    static struct __init console bfin_early_serial_console = {

         .name = "early_BFuart",

         .write = early_serial_write,

         .device = uart_console_device,

         .flags = CON_PRINTBUFFER,

         .setup = bfin_serial_console_setup,

         .index = -1,

         .data  = &bfin_serial_reg,

    };

    经过初始化后,flags的值将变为 CON_PRINTBUFFER | CON_BOOT 。

     

    1.1.4   bfin_serial_reg这个全局变量的定义为:

    static struct uart_driver bfin_serial_reg = {

         .owner             = THIS_MODULE,

         .driver_name       = "bfin-uart",

         .dev_name     = BFIN_SERIAL_NAME,

         .major             = BFIN_SERIAL_MAJOR,

         .minor             = BFIN_SERIAL_MINOR,

         .nr           = NR_PORTS,

         .cons              = BFIN_SERIAL_CONSOLE,

    };

     

     

     

    1.2    初始化过程1.2.1   setup_early_printk当内核调用此函数时,仅仅做了一些最基本的硬件初始化工作,如CCLK,EBIU等。下面看看它的实现:

    int __init setup_early_printk(char *buf)

    {

     

         /* Crashing in here would be really bad, so check both the var

            and the pointer before we start using it

          */

         if (!buf)

             return 0;

     

         if (!*buf)

             return 0;

     

         if (early_console != NULL)

             return 0;

     

    #ifdef CONFIG_SERIAL_BFIN

         /* Check for Blackfin Serial */

         if (!strncmp(buf, "serial,uart", 11)) {

             buf += 11;

             early_console = earlyserial_init(buf);

         }

    #endif

    #ifdef CONFIG_FB

             /* TODO: add framebuffer console support */

    #endif

     

         if (likely(early_console)) {

             early_console->flags |= CON_BOOT;

     

             register_console(early_console);

             printk(KERN_INFO "early printk enabled on %s%d/n",

                  early_console->name,

                  early_console->index);

         }

     

         return 0;

    }

    这段代码在简单判断后,有两个关键的调用。第一个是earlyserial_init,用以初始化串口的硬件参数。第二个调用是register_console,用以注册一个console结构体,同时输出printk缓冲区中的已有数据。

    1.2.2   earlyserial_init这一函数的实现为:

    static struct console * __init earlyserial_init(char *buf)

    {

         int baud, bit;

         char parity;

         unsigned int serial_port = DEFAULT_PORT;

         unsigned int cflag = DEFAULT_CFLAG;

     

         serial_port = simple_strtoul(buf, &buf, 10);

         buf++;

     

         cflag = 0;

         baud = simple_strtoul(buf, &buf, 10);

         switch (baud) {

         case 1200:

             cflag |= B1200;

             break;

         case 2400:

             cflag |= B2400;

             break;

         case 4800:

             cflag |= B4800;

             break;

         case 9600:

             cflag |= B9600;

             break;

         case 19200:

             cflag |= B19200;

             break;

         case 38400:

             cflag |= B38400;

             break;

         case 115200:

             cflag |= B115200;

             break;

         default:

             cflag |= B57600;

         }

     

         parity = buf[0];

         buf++;

         switch (parity) {

         case 'e':

             cflag |= PARENB;

             break;

         case 'o':

             cflag |= PARODD;

             break;

         }

     

         bit = simple_strtoul(buf, &buf, 10);

         switch (bit) {

         case 5:

             cflag |= CS5;

             break;

         case 6:

             cflag |= CS5;

             break;

         case 7:

             cflag |= CS5;

             break;

         default:

             cflag |= CS8;

         }

     

    #ifdef CONFIG_SERIAL_BFIN

         return bfin_earlyserial_init(serial_port, cflag);

    #else

         return NULL;

    #endif

     

    }

    很简单,实际上就是提取earlyprintk中的参数,将之转换为serial_port和cflag两个数值,然后调用bfin_earlyserial_init函数来初始化串口。

    1.2.3   bfin_earlyserial_init此函数如下所示:

    struct console __init *bfin_earlyserial_init(unsigned int port,

                                unsigned int cflag)

    {

         struct bfin_serial_port *uart;

         struct ktermios t;

     

         if (port == -1 || port >= nr_ports)

             port = 0;

         bfin_serial_init_ports();

         bfin_early_serial_console.index = port;

         uart = &bfin_serial_ports[port];

         t.c_cflag = cflag;

         t.c_iflag = 0;

         t.c_oflag = 0;

         t.c_lflag = ICANON;

         t.c_line = port;

         bfin_serial_set_termios(&uart->port, &t, &t);

         return &bfin_early_serial_console;

    }

    这个函数除了初始化硬件参数之外,还要构造一个console结构体。

    1.2.3.1             bfin_serial_init_ports这个函数由bfin_earlyserial_init调用,其实现为:

    static void __init bfin_serial_init_ports(void)

    {

         static int first = 1;

         int i;

     

         if (!first)

             return;

         first = 0;

     

         for (i = 0; i < nr_ports; i++) {

             bfin_serial_ports[i].port.uartclk   = get_sclk();

             bfin_serial_ports[i].port.ops       = &bfin_serial_pops;

             bfin_serial_ports[i].port.line      = i;

             bfin_serial_ports[i].port.iotype    = UPIO_MEM;

             bfin_serial_ports[i].port.membase   =

                  (void __iomem *)bfin_serial_resource[i].uart_base_addr;

             bfin_serial_ports[i].port.mapbase   =

                  bfin_serial_resource[i].uart_base_addr;

             bfin_serial_ports[i].port.irq       =

                  bfin_serial_resource[i].uart_irq;

             bfin_serial_ports[i].port.flags     = UPF_BOOT_AUTOCONF;

    #ifdef CONFIG_SERIAL_BFIN_DMA

             bfin_serial_ports[i].tx_done         = 1;

             bfin_serial_ports[i].tx_count        = 0;

             bfin_serial_ports[i].tx_dma_channel =

                  bfin_serial_resource[i].uart_tx_dma_channel;

             bfin_serial_ports[i].rx_dma_channel =

                  bfin_serial_resource[i].uart_rx_dma_channel;

             init_timer(&(bfin_serial_ports[i].rx_dma_timer));

    #endif

    #ifdef CONFIG_SERIAL_BFIN_CTSRTS

             init_timer(&(bfin_serial_ports[i].cts_timer));

             bfin_serial_ports[i].cts_pin         =

                  bfin_serial_resource[i].uart_cts_pin;

             bfin_serial_ports[i].rts_pin         =

                  bfin_serial_resource[i].uart_rts_pin;

    #endif

             bfin_serial_hw_init(&bfin_serial_ports[i]);

         }

    }

    在这里nr_ports的值为1,即只有一个串口。从上述代码可以看出,它只是设置了uart结构体的内容,但是并没有初始化硬件。最后一个函数调用bfin_serial_hw_init,看起来好像要初始化硬件的样子,实际上什么也没做。

    static void bfin_serial_hw_init(struct bfin_serial_port *uart)

    {

     

    #ifdef CONFIG_SERIAL_BFIN_UART0

         peripheral_request(P_UART0_TX, DRIVER_NAME);

         peripheral_request(P_UART0_RX, DRIVER_NAME);

    #endif

     

    #ifdef CONFIG_SERIAL_BFIN_CTSRTS

         if (uart->cts_pin >= 0) {

             gpio_request(uart->cts_pin, DRIVER_NAME);

             gpio_direction_input(uart->cts_pin);

         }

         if (uart->rts_pin >= 0) {

             gpio_request(uart->rts_pin, DRIVER_NAME);

             gpio_direction_input(uart->rts_pin, 0);

         }

    #endif

    }

    1.2.3.2             bfin_serial_set_termios这个函数将实际配置硬件参数,与下文所示的普通console功能相同,此时传递进来的将是bfin_serial_ports[0]这个全局变量中的port的指针,实际上也是bfin_serial_ports[0]的首地址,因此在此函数一开头就将之转换为bfin_serial_port类型的指针。

    static void

    bfin_serial_set_termios(struct uart_port *port, struct ktermios *termios,

                struct ktermios *old)

    {

         struct bfin_serial_port *uart = (struct bfin_serial_port *)port;

         unsigned long flags;

         unsigned int baud, quot;

         unsigned short val, ier, lcr = 0;

     

         switch (termios->c_cflag & CSIZE) {

         case CS8:

             lcr = WLS(8);

             break;

         case CS7:

             lcr = WLS(7);

             break;

         case CS6:

             lcr = WLS(6);

             break;

         case CS5:

             lcr = WLS(5);

             break;

         default:

             printk(KERN_ERR "%s: word lengh not supported/n",

                  __FUNCTION__);

         }

     

         if (termios->c_cflag & CSTOPB)

             lcr |= STB;

         if (termios->c_cflag & PARENB)

             lcr |= PEN;

         if (!(termios->c_cflag & PARODD))

             lcr |= EPS;

         if (termios->c_cflag & CMSPAR)

             lcr |= STP;

     

         port->read_status_mask = OE;

         if (termios->c_iflag & INPCK)

             port->read_status_mask |= (FE | PE);

         if (termios->c_iflag & (BRKINT | PARMRK))

             port->read_status_mask |= BI;

     

         /*

          * Characters to ignore

          */

         port->ignore_status_mask = 0;

         if (termios->c_iflag & IGNPAR)

             port->ignore_status_mask |= FE | PE;

         if (termios->c_iflag & IGNBRK) {

             port->ignore_status_mask |= BI;

             /*

              * If we're ignoring parity and break indicators,

              * ignore overruns too (for real raw support).

              */

             if (termios->c_iflag & IGNPAR)

                  port->ignore_status_mask |= OE;

         }

     

         baud = uart_get_baud_rate(port, termios, old, 0, port->uartclk/16);

         quot = uart_get_divisor(port, baud);

         spin_lock_irqsave(&uart->port.lock, flags);

     

         UART_SET_ANOMALY_THRESHOLD(uart, USEC_PER_SEC / baud * 15);

     

         /* Disable UART */

         ier = UART_GET_IER(uart);

    #ifdef CONFIG_BF54x

         UART_CLEAR_IER(uart, 0xF);

    #else

         UART_PUT_IER(uart, 0);

    #endif

     

    #ifndef CONFIG_BF54x

         /* Set DLAB in LCR to Access DLL and DLH */

         val = UART_GET_LCR(uart);

         val |= DLAB;

         UART_PUT_LCR(uart, val);

         SSYNC();

    #endif

     

         UART_PUT_DLL(uart, quot & 0xFF);

         SSYNC();

         UART_PUT_DLH(uart, (quot >> 8) & 0xFF);

         SSYNC();

     

    #ifndef CONFIG_BF54x

         /* Clear DLAB in LCR to Access THR RBR IER */

         val = UART_GET_LCR(uart);

         val &= ~DLAB;

         UART_PUT_LCR(uart, val);

         SSYNC();

    #endif

     

         UART_PUT_LCR(uart, lcr);

     

         /* Enable UART */

    #ifdef CONFIG_BF54x

         UART_SET_IER(uart, ier);

    #else

         UART_PUT_IER(uart, ier);

    #endif

     

         val = UART_GET_GCTL(uart);

         val |= UCEN;

         UART_PUT_GCTL(uart, val);

     

         spin_unlock_irqrestore(&uart->port.lock, flags);

    }

    此时传递进来的termios变量中的几个值:

    c_cflag:此成员中保存了串口的硬件参数。

    c_lflag:此成员的值为ICANON。

    其它值均为0。

    还有一点需要注意,在使用u-boot之类的引导程序时,通常会打开接收中断或者发送中断,而在不使用引导程序时,UART_IER复位后的值为0,为了模拟引导程序,可以在最后还原UART_IER时直接打开接收中断。类似于下面的语句:

         /* Enable UART */

    #ifdef CONFIG_BF54x

         UART_SET_IER(uart, ier);

    #else

         ier |= (ERBFI | ETBEI);

         UART_PUT_IER(uart, ier);

    #endif

     

     

     

    1.2.4   register_console这个和普通console的功能相同,其实现为:

    /*

     * The console driver calls this routine during kernel initialization

     * to register the console printing procedure with printk() and to

     * print any messages that were printed by the kernel before the

     * console driver was initialized.

     */

    void register_console(struct console *console)

    {

         int i;

         unsigned long flags;

         struct console *bootconsole = NULL;

     

         if (console_drivers) {

             if (console->flags & CON_BOOT)

                  return;

             if (console_drivers->flags & CON_BOOT)

                  bootconsole = console_drivers;

         }

     

         if (preferred_console < 0 || bootconsole || !console_drivers)

             preferred_console = selected_console;

     

         /*

          *   See if we want to use this console driver. If we

          *   didn't select a console we take the first one

          *   that registers here.

          */

         if (preferred_console < 0) {

             if (console->index < 0)

                  console->index = 0;

             if (console->setup == NULL ||

                 console->setup(console, NULL) == 0) {

                  console->flags |= CON_ENABLED | CON_CONSDEV;

                  preferred_console = 0;

             }

         }

     

         /*

          *   See if this console matches one we selected on

          *   the command line.

          */

         for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0];

                  i++) {

             if (strcmp(console_cmdline[i].name, console->name) != 0)

                  continue;

             if (console->index >= 0 &&

                 console->index != console_cmdline[i].index)

                  continue;

             if (console->index < 0)

                  console->index = console_cmdline[i].index;

             if (console->setup &&

                 console->setup(console, console_cmdline[i].options) != 0)

                  break;

             console->flags |= CON_ENABLED;

             console->index = console_cmdline[i].index;

             if (i == selected_console) {

                  console->flags |= CON_CONSDEV;

                  preferred_console = selected_console;

             }

             break;

         }

     

         if (!(console->flags & CON_ENABLED))

             return;

     

         if (bootconsole) {

             printk(KERN_INFO "console handover: boot [%s%d] -> real [%s%d]/n",

                    bootconsole->name, bootconsole->index,

                    console->name, console->index);

             unregister_console(bootconsole);

             console->flags &= ~CON_PRINTBUFFER;

         }

     

         /*

          *   Put this console in the list - keep the

          *   preferred driver at the head of the list.

          */

         acquire_console_sem();

         if ((console->flags & CON_CONSDEV) || console_drivers == NULL) {

             console->next = console_drivers;

             console_drivers = console;

             if (console->next)

                  console->next->flags &= ~CON_CONSDEV;

         } else {

             console->next = console_drivers->next;

             console_drivers->next = console;

         }

         if (console->flags & CON_PRINTBUFFER) {

             /*

              * release_console_sem() will print out the buffered messages

              * for us.

              */

             spin_lock_irqsave(&logbuf_lock, flags);

             con_start = log_start;

             spin_unlock_irqrestore(&logbuf_lock, flags);

         }

         release_console_sem();

    }

    当运行到这里时,参数console将指向全局变量bfin_early_serial_console。而console_drivers这一全局变量则为空。

    当此函数执行完成后,将输出printk缓冲区中的内容:

    Linux version 2.6.22.19-ADI-2008R1.5-svn (wmz@localhost.localdomain) (gcc versio

    n 4.1.2 (ADI svn)) #4 SMP Sat Jan 10 22:24:10 CST 2009

    early printk enabled on early_BFuart0

    1.2.4.1             串口硬件初始化在register_console函数中要进行串口硬件的初始化工作,这个工作是由console结构体中的setup回调函数来完成的:

         int  (*setup)(struct console *, char *);

    在register_console函数中有这样一段代码:

         /*

          *   See if we want to use this console driver. If we

          *   didn't select a console we take the first one

          *   that registers here.

          */

         if (preferred_console < 0) {

             if (console->index < 0)

                  console->index = 0;

             if (console->setup == NULL ||

                 console->setup(console, NULL) == 0) {

                  console->flags |= CON_ENABLED | CON_CONSDEV;

                  preferred_console = 0;

             }

         }

    在此调用了setup回调函数。

    在bf561的内核中,此回调函数指向bfin_serial_console_setup,它位于drivers/serial/bfin-5xx.c:

    static int __init

    bfin_serial_console_setup(struct console *co, char *options)

    {

         struct bfin_serial_port *uart;

         int baud = 57600;

         int bits = 8;

         int parity = 'n';

         int flow = 'n';

     

         /*

          * Check whether an invalid uart number has been specified, and

          * if so, search for the first available port that does have

          * console support.

          */                                                    

         if (co->index == -1 || co->index >= nr_ports)

             co->index = 0;

         uart = &bfin_serial_ports[co->index];

     

         if (options)

             uart_parse_options(options, &baud, &parity, &bits, &flow);

         else

             bfin_serial_console_get_options(uart, &baud, &parity, &bits);

     

         return uart_set_options(&uart->port, co, baud, parity, bits, flow);

    }

    在这里,由于在register_console中传递过来的option为NULL,因此将直接调用bfin_serial_console_get_options,而这个函数用于直接从硬件寄存器中读取当前的串口配置,但是它仅适用于boot-loader已经对串口初始化的情况,对于没用boot-loader的情况,它将什么也不做。

    因此,对于不用boot-loader的情况,early console的波特率将只能使用57600这一固定值。如果要使earlyprintk中的波特率这一参数生效,必须修改此处的逻辑。

     

    1.3    通过console输出信息在内核中,向console输出信息是通过release_console_sem函数来完成的:/** * release_console_sem - unlock the console system * * Releases the semaphore which the caller holds on the console system * and the console driver list. * * While the semaphore was held, console output may have been buffered * by printk(). If this is the case, release_console_sem() emits * the output prior to releasing the semaphore. * * If there is output waiting for klogd, we wake it up. * * release_console_sem() may be called from any context. */void release_console_sem(void){     unsigned long flags;     unsigned long _con_start, _log_end;     unsigned long wake_klogd = 0;      if (console_suspended) {         up(&secondary_console_sem);         return;     }      console_may_schedule = 0;      for ( ; ; ) {         spin_lock_irqsave(&logbuf_lock, flags);         wake_klogd |= log_start - log_end;         if (con_start == log_end)              break;             /* Nothing to print */         _con_start = con_start;         _log_end = log_end;         con_start = log_end;        /* Flush */         spin_unlock(&logbuf_lock);         call_console_drivers(_con_start, _log_end);         local_irq_restore(flags);     }     console_locked = 0;     up(&console_sem);     spin_unlock_irqrestore(&logbuf_lock, flags);     if (wake_klogd)         wake_up_klogd();}在这里,实际输出通过call_console_drivers函数完成:/* * Call the console drivers, asking them to write out * log_buf[start] to log_buf[end - 1]. * The console_sem must be held. */static void call_console_drivers(unsigned long start, unsigned long end){     unsigned long cur_index, start_print;     static int msg_level = -1;      BUG_ON(((long)(start - end)) > 0);      cur_index = start;     start_print = start;     while (cur_index != end) {         if (msg_level < 0 && ((end - cur_index) > 2) &&                   LOG_BUF(cur_index + 0) == '<' &&                   LOG_BUF(cur_index + 1) >= '0' &&                   LOG_BUF(cur_index + 1) <= '7' &&                   LOG_BUF(cur_index + 2) == '>') {              msg_level = LOG_BUF(cur_index + 1) - '0';              cur_index += 3;              start_print = cur_index;         }         while (cur_index != end) {              char c = LOG_BUF(cur_index);               cur_index++;              if (c == '/n') {                   if (msg_level < 0) {                       /*                        * printk() has already given us loglevel tags in                        * the buffer. This code is here in case the                        * log buffer has wrapped right round and scribbled                        * on those tags                        */                       msg_level = default_message_loglevel;                   }                   _call_console_drivers(start_print, cur_index, msg_level);                   msg_level = -1;                   start_print = cur_index;                   break;              }         }     }     _call_console_drivers(start_print, end, msg_level);}继续跟踪_call_console_drivers:/* * Write out chars from start to end - 1 inclusive */static void _call_console_drivers(unsigned long start,                   unsigned long end, int msg_log_level){     if ((msg_log_level < console_loglevel || ignore_loglevel) &&              console_drivers && start != end) {         if ((start & LOG_BUF_MASK) > (end & LOG_BUF_MASK)) {              /* wrapped write */              __call_console_drivers(start & LOG_BUF_MASK,                            log_buf_len);              __call_console_drivers(0, end & LOG_BUF_MASK);         } else {              __call_console_drivers(start, end);         }     }}继续跟踪__call_console_drivers:/* * Call the console drivers on a range of log_buf */static void __call_console_drivers(unsigned long start, unsigned long end){     struct console *con;      for (con = console_drivers; con; con = con->next) {         if ((con->flags & CON_ENABLED) && con->write &&                   (cpu_online(smp_processor_id()) ||                   (con->flags & CON_ANYTIME)))              con->write(con, &LOG_BUF(start), end - start);     }}嘿嘿,原来是调用console结构体中的write函数!记得我们在内核中是使用了bfin_serial_console做为我们的console,而这个结构体中的write回调函数则初始化为bfin_serial_console_write,这个函数在drivers/serial/bfin_5xx.c:/* * Interrupts are disabled on entering */static voidbfin_serial_console_write(struct console *co, const char *s, unsigned int count){     struct bfin_serial_port *uart = &bfin_serial_ports[co->index];     int flags = 0;      spin_lock_irqsave(&uart->port.lock, flags);     uart_console_write(&uart->port, s, count, bfin_serial_console_putchar);     spin_unlock_irqrestore(&uart->port.lock, flags);}再跟踪uart_console_write,此函数位于drivers/serial/serial_core.c。/* *   uart_console_write - write a console message to a serial port *   @port: the port to write the message *   @s: array of characters *   @count: number of characters in string to write *   @write: function to write character to port */void uart_console_write(struct uart_port *port, const char *s,              unsigned int count,              void (*putchar)(struct uart_port *, int)){     unsigned int i;      for (i = 0; i < count; i++, s++) {         if (*s == '/n')              putchar(port, '/r');         putchar(port, *s);     }}因为uart是一个通用的抽象接口,它需要指定与具体硬件相关的函数来进行输出,在我们的调用中使用了bfin_serial_console_putchar做为回调函数,因此实际输出是通过bfin_serial_console_putchar来完成的,此函数在drivers/serial/bfin_5xx.c:static void bfin_serial_console_putchar(struct uart_port *port, int ch){     struct bfin_serial_port *uart = (struct bfin_serial_port *)port;     while (!(UART_GET_LSR(uart) & THRE))         barrier();     UART_PUT_CHAR(uart, ch);     SSYNC();}

     

    细看printk.c文件,可以发现几个与printk函数相关的参数:

    1.1 log_buf_len

    __setup("log_buf_len=", log_buf_len_setup);

    即这个内核参数由log_buf_len_setup函数进行处理:

    static char __log_buf[__LOG_BUF_LEN];

    static char *log_buf = __log_buf;

    static int log_buf_len = __LOG_BUF_LEN;

    static unsigned long logged_chars; /* Number of chars produced since last read+clear operation */

     

    static int __init log_buf_len_setup(char *str)

    {

    unsigned long size = memparse(str, &str);

    unsigned long flags;

     

    if (size)

    size = roundup_pow_of_two(size);

    if (size > log_buf_len) {

    unsigned long start, dest_idx, offset;

    char *new_log_buf;

     

    new_log_buf = alloc_bootmem(size);

    if (!new_log_buf) {

    printk(KERN_WARNING "log_buf_len: allocation failed/n");

    goto out;

    }

     

    spin_lock_irqsave(&logbuf_lock, flags);

    log_buf_len = size;

    log_buf = new_log_buf;

     

    offset = start = min(con_start, log_start);

    dest_idx = 0;

    while (start != log_end) {

    log_buf[dest_idx] = __log_buf[start & (__LOG_BUF_LEN - 1)];

    start++;

    dest_idx++;

    }

    log_start -= offset;

    con_start -= offset;

    log_end -= offset;

    spin_unlock_irqrestore(&logbuf_lock, flags);

     

    printk(KERN_NOTICE "log_buf_len: %d/n", log_buf_len);

    }

    out:

    return 1;

    }

    在默认情况下,printk缓冲区的大小由__LOG_BUF_LEN指定

    #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)

    #define CONFIG_LOG_BUF_SHIFT 14

    214次方。输入的值必须比这个值大才有效果。而且由于使用了memparse进行数值的分析,因此它可以K, M, G这三个值。如:

    log_buf_len=64k

    1.2 ignore_loglevel

    static int __read_mostly ignore_loglevel;

     

    static int __init ignore_loglevel_setup(char *str)

    {

    ignore_loglevel = 1;

    printk(KERN_INFO "debug: ignoring loglevel setting./n");

     

    return 1;

    }

     

    __setup("ignore_loglevel", ignore_loglevel_setup);

    这个内核参数不需要设置值。这个参数仅用在_call_console_drivers函数中

    static void _call_console_drivers(unsigned long start,

    unsigned long end, int msg_log_level)

    {

    if ((msg_log_level < console_loglevel || ignore_loglevel) &&

    console_drivers && start != end) {

    if ((start & LOG_BUF_MASK) > (end & LOG_BUF_MASK)) {

    /* wrapped write */

    __call_console_drivers(start & LOG_BUF_MASK,

    log_buf_len);

    __call_console_drivers(0, end & LOG_BUF_MASK);

    } else {

    __call_console_drivers(start, end);

    }

    }

    }

    在使用了这个内核参数后,printk将忽略输出的级别,直接将传递进来的所有信息输出。

    1.3 KERN_*

    在使用printk输出的时候,可以使用KERN_*宏来指定输出级别。

    #define KERN_EMERG "<0>" /* system is unusable */

    #define KERN_ALERT "<1>" /* action must be taken immediately */

    #define KERN_CRIT "<2>" /* critical conditions */

    #define KERN_ERR "<3>" /* error conditions */

    #define KERN_WARNING "<4>" /* warning conditions */

    #define KERN_NOTICE "<5>" /* normal but significant condition */

    #define KERN_INFO "<6>" /* informational */

    #define KERN_DEBUG "<7>" /* debug-level messages */

    _call_console_drivers函数中可以看到,当指定的输出级别大于等于console_loglevel时,信息将不会输出。console_loglevel的定义为:

    #define console_loglevel (console_printk[0])

    当使用printk而不指定输出级别时,printk取默认级别default_message_loglevel,其定义为:

    #define default_message_loglevel (console_printk[1])

    这里涉及的console_printk是一个全局变量:

    int console_printk[4] = {

    DEFAULT_CONSOLE_LOGLEVEL, /* console_loglevel */

    DEFAULT_MESSAGE_LOGLEVEL, /* default_message_loglevel */

    MINIMUM_CONSOLE_LOGLEVEL, /* minimum_console_loglevel */

    DEFAULT_CONSOLE_LOGLEVEL, /* default_console_loglevel */

    };

    #define DEFAULT_CONSOLE_LOGLEVEL 7 /* anything MORE serious than KERN_DEBUG */

    #define DEFAULT_MESSAGE_LOGLEVEL 4 /* KERN_WARNING */

    因此,只要不是在输出时指定KERN_DEBUG,其信息都将被printk输出。

    1.4 printk_time

    这个参数定义为:

    #if defined(CONFIG_PRINTK_TIME)

    static int printk_time = 1;

    #else

    static int printk_time = 0;

    #endif

    module_param(printk_time, int, S_IRUGO | S_IWUSR);

     

    static int __init printk_time_setup(char *str)

    {

    if (*str)

    return 0;

    printk_time = 1;

    return 1;

    }

     

    __setup("time", printk_time_setup);

    在指定这个参数之后,printk将在每条信息之前加上时间。

    asmlinkage int vprintk(const char *fmt, va_list args)

    {

    …………………………….

    for (p = printk_buf; *p; p++) {

    if (log_level_unknown) {

    /* log_level_unknown signals the start of a new line */

    if (printk_time) {

    int loglev_char;

    char tbuf[50], *tp;

    unsigned tlen;

    unsigned long long t;

    unsigned long nanosec_rem;

     

    /*

    * force the log level token to be

    * before the time output.

    */

    if (p[0] == '<' && p[1] >='0' &&

    p[1] <= '7' && p[2] == '>') {

    loglev_char = p[1];

    p += 3;

    printed_len -= 3;

    } else {

    loglev_char = default_message_loglevel

    + '0';

    }

    t = printk_clock();

    nanosec_rem = do_div(t, 1000000000);

    tlen = sprintf(tbuf,

    "<%c>[%5lu.%06lu] ",

    loglev_char,

    (unsigned long)t,

    nanosec_rem/1000);

     

    for (tp = tbuf; tp < tbuf + tlen; tp++)

    emit_log_char(*tp);

    printed_len += tlen;

    } else {

    if (p[0] != '<' || p[1] < '0' ||

    p[1] > '7' || p[2] != '>') {

    emit_log_char('<');

    emit_log_char(default_message_loglevel

    + '0');

    emit_log_char('>');

    printed_len += 3;

    }

    }

    log_level_unknown = 0;

    if (!*p)

    break;

    }

    emit_log_char(*p);

    if (*p == '/n')

    log_level_unknown = 1;

    }

     

    最新回复(0)