1. 冒泡排序
算法介绍
冒泡排序,是指计算机的一种排序方法,它的时间复杂度为O(n^2),虽然不及堆排序、快速排序的O(nlogn,底数为2),但是有两个优点:1.“编 程复杂度”很低,很容易写出代码;2.具有稳定性,这里的稳定性是指原序列中相同元素的相对顺序仍然保持到排序后的序列,而堆排序、快速排序均不具有稳定 性。不过,一路、二路归并排序、不平衡二叉树排序的速度均比冒泡排序快,且具有稳定性,但速度不及堆排序、快速排序。冒泡排序是经过n-1趟子排序完成 的,第i趟子排序从第1个数至第n-i个数,若第i个数比后一个数大(则升序,小则降序)则交换两数。
基本概念
冒泡 排 序(BubbleSort)的基本概念是:依次比较相邻的两个数,将小数放在前面,大数放在后面。即在第一趟:首先比较第1个和第2个数,将小数放前,大 数放后。然后比较第2个数和第3个数,将小数放前,大数放后,如此继续,直至比较最后两个数,将小数放前,大数放后。至此第一趟结束,将最大的数放到了最 后。在第二趟:仍从第一对数开始比较(因为可能由于第2个数和第3个数的交换,使得第1个数不再小于第2个数),将小数放前,大数放后,一直比较到倒数第 二个数(倒数第一的位置上已经是最大的),第二趟结束,在倒数第二的位置上得到一个新的最大数(其实在整个数列中是第二大的数)。如此下去,重复以上过 程,直至最终完成排序。
由于在排序过程中总是小数往前放,大数往后放,相当于气泡往上升,所以称作冒泡排序。
用 二重循环 实 现,外循环变量设为i,内循环变量设为j。外循环重复9次,内循环依次重复9,8,...,1次。每次进行比较的两个元素都是与内循环j有关的,它们可以 分别用a[j]和a[j+1]标识,i的值依次为1,2,...,9,对于每一个i, j的值依次为1,2,...10-i。
设想被排序的数组R[1..N]垂直竖立,将每个数据元素看作有重量的气泡,根据轻气泡不能在重气泡之下的原则,从下往上扫描数组R,凡扫描到违反本原则的轻气泡,就使其向上"漂浮",如此反复进行,直至最后任何两个气泡都是轻者在上,重者在下为止。
49 13 13 13 13 13 13 13
38 49 27 27 27 27 27 27
65 38 49 38 38 38 38 38
97 65 38 49 49 49 49 49
76 97 65 49 49 49 49 49
13 76 97 65 65 65 65 65
27 27 76 97 76 76 76 76
49 49 49 76 97 97 97 97
实现代码(C#)
private static void Swap(ref int left, ref int right)
{
int temp = left;
left = right;
right = temp;
}
private static void BubbleSort(int [] R, int len)
{
bool flag = false ;
for (int i = 0; i < len; i++)
{
flag = false ;
for (int j = 0; j < len - i - 1; j++)
{
if (R[j + 1] < R[j])
{
Swap(ref R[j], ref R[j + 1]);
flag = true ;
}
}
if (!flag)
{
break ;
}
}
}
2. 选择排序
算法介绍
n个记录的文件的直接选择排序可经过n-1趟直接选择排序得到有序结果:
①初始状态:无序区为R[1..n],有序区为空。
②第1趟排序
在无序区R[1..n]中选出关键字最小的记录R[k],将它与无序区的第1个记录R[1]交换,使R[1..1]和R[2..n]分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区。
……
③第i趟排序
第i趟排序开始时,当前有序区和无序区分别为R[1..i-1]和R (1≤i≤n-1)。该趟排序从当前无序区中选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换,使R[1..i]和R分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区。
这样,n个记录的文件的直接选择排序可经过n-1趟直接选择排序得到有序结果。
常见的选择排序细分为简单选择排序、树形选择排序(锦标赛 排序)、堆排序。上述算法仅是简单选择排序的步骤。
算法实例
初始关键字 [49 38 65 97 76 13 27 49]
第一趟排序后 13 [38 65 97 76 49 27 49]
第二趟排序后 13 27 [65 97 76 49 38 49]
第三趟排序后 13 27 38 [97 76 49 65 49]
第四趟排序后 13 27 38 49 [76 97 65 49 ]
第五趟排序后 13 27 38 49 49 [97 65 76]
第六趟排序后 13 27 38 49 49 65 [97 76]
第七趟排序后 13 27 38 49 49 65 76 [97]
最后排序结果 13 27 38 49 49 65 76 97
实现代码(C#)
private static void Swap(ref int left, ref int right)
private static void SelectSort(int [] R, int len)
{
int min = 0;
for (int i = 0; i < len - 1; i++)
{
min = i;
for (int j = i + 1; j < len; j++)
{
if (R[j] < R[min])
{
min = j;
}
}
Swap(ref R[i], ref R[min]);
}
}
3. 插入排序
算法介绍
有一个已经有序的数据序列,要求在这个已经排好的数据序列中插入一个数,但要求插入后此数据序列仍然有序,这个时候就要用到一种新的排序方法——插入排序法 ,插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2)。是稳定的排序方法。插入算法把要排序的数组 分成两部分:第一部分包含了这个数组的所有元素,但将最后一个元素除外,而第二部分就只包含这一个元素。在第一部分排序后,再把这个最后元素插入到此刻已是有序的第一部分里的位置。
基本概念
假定这个 数组 的序是排好的,然后从头往后,如果有数比当前外层元素的值大,则将这个数的位置往后挪,直到当前外层元素的值大于或等于它前面的位置为止.这具算法在排完前k个数之后,可以保证a[1…k]是局部有序的,保证了插入过程的正确性.
将n个元素的数列分为已有序和无序两个部分,如
插入排序过程示例
下所示:
{,{a2,a3,a4,…,an}}
{{a1(1),a2(1)},{a3(1),a4(1) …,an(1)}}
…
{{a1(n-1),a2(n-1) ,…}, {an(n-1)}}
每次处理就是将无序数列的第一个元素与有序数列的元素从后往前逐个进行比较,找出插入位置,将该元素
一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:
1. 从第一个元素开始,该元素可以认为已经被排序
2. 取出下一个元素,在已经排序的元素序列中从后向前扫描
3. 如果该元素(已排序)大于新元素,将该元素移到下一位置
4. 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
5. 将新元素插入到下一位置中
6. 重复步骤2
如果比较操作的代价比交换操作大的话,可以采用 二分查找 法来减少比较操作的数目。该算法可以认为是插入排序的一个变种,称为二分查找排序。
实现代码(C#)
private static void InsertSort(int [] R, int len)
{
int t = 0;
int j = 0;
for (int i = 1; i < len; i++)
{
t = R[i];
j = i - 1;
while (j >= 0 && R[j] > t)
{
R[j + 1] = R[j];
j--;
}
R[j + 1] = t;
}
}
{
int temp = left;
left = right;
right = temp;
}
每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。 选择排序是不稳定的排序方法。