gsm基本概念

    技术2022-05-11  68

    ACCH [GSM 05.01, 05.02]    Associated control channel. Two types are defined: slow associated control channel (SACCH) and fast associated control channel (FACCH). An ACCH is assigned for traffic channels (TCHs) as well as for SDCCHs.  AGCH [GSM 05.01, 05.02]    Access grant channel. A common control channel (CCCH) that is used only in the downlink direction of even-numbered time slots (typically solely in time slot 0) of the BCCH-TRX. It is used to assign a SDCCH to the MS, and it transports the IMM_ASS (IMMediate ASSign) message. Depending on the chosen channel configuration, the AGCH shares the available downlink CCCHs with the paging channel (PCH) and the SDCCH. The transmission rate per AGCH block is 782 bps. ARFCN [GSM 05.01]    Absolute radio frequency channel number. An identifier or number of a channel used on the Air-interface. From the ARFCN, it is possible to calculate the frequency of the uplink and the downlink that the channel uses. How to perform this calculation is shown under downlink. BCC [GSM 03.03]     Base station color code. A 3-bit-long parameter that is part of the BSIC. Used to distinguish among the eight different training sequence codes (TSCs) that one BTS may use on the CCCHs and to distinguish between neighbor BTSs without the need for the MS to register on any other BTS. BCCH [GSM 04.08, 05.01, 05.02]      Broadcast common control channel. The “beacon” of every BTS. Per BTS, there is always exactly one BCCH, which is transmitted in time slot 0 of the BCCH frequency. The transmission rate is 782 bps.   BFI [GSM 05.05, 06.31, 08.60]        Bad frame indicator. A parameter within the TRAU frame. The value of the BFI indicates to the voice decoder if a TRAU frame contains valid data (BFI = 0) or not (BFI = 1). Depending on that information, the voice decoder uses or discards a TRAU frame. Note: For FACCH frames, BFI always equals 1, because they contain signaling data.   BS_AG_BLKS_RES [GSM 05.02] Parameter transmitted with the BCCH SYS_INFO 3 message. BS_AG_BLKS_RES is 3 bits long and hence can take on the values 0 through 7. The value of this parameter indicates to all mobile stations in a cell how many of the CCCH blocks of a 51 multiframe on a BCCH-TS 0 are reserved for access grant channels (AGCHs). The number of available paging channels (PCHs) is reduced accordingly. Note that during operation in the combined mode of SDCCH and CCCH the number of CCCH blocks per time slot is four rather than eight, compared to the noncombined mode. The complete picture is illustrated in Figure G.7. (See also CCCH_CONF). BS_PA_MFRMS [GSM 05.02] Mobile stations are organized into paging groups based on their IMSI. A mobile station that belongs to a certain paging group needs to check for a paging message only once in a number of 51 multiframes. In between, the mobile station may switch over to an energysaving mode, discontinuous reception (DRX). The 3-bit-wide parameter BS_PA_MFRMS is part of the BCCH SYS_INFO 3 and tells the mobile station after how many multiframes the content of the paging channel (PCH) has to be analyzed by the MS. In other words, this parameter indicates how often a particular paging group is repeated. Figure G.8 provides an example of how this parameter is used. BS_CC_CHANS [GSM 05.02] Parameter that indicates how many time slots on the BCCH frequency are reserved for common control channels (CCCHs). This parameter is not transmitted but is derived from another parameter, CCCH_CONF. BS_CCCH_SDCCH_COMB [GSM 05.02] Parameter that indicates whether the dedicated control channels (SDCCHs) and the common control channels (CCCHs) share a given time slot. Such a combined configuration is described in Chapter 7. This parameter is not transmitted but is derived from another parameter, CCCH_CONF. BSIC [GSM 03.03] Base station identity code. An identifier for a BTS, although the BSIC does not uniquely identify a single BTS, since it has to be reused several times per PLMN. The purpose of the BSIC is to allow the mobile station to identify and distinguish among neighbor cells, even when neighbor cells use the same BCCH frequency. Because the BSIC is broadcast within the synchronization channel (SCH) of a BTS, the mobile station does not even have to establish a connection to a BTS to retrieve the BSIC. Figure G.9 shows the format of the BSIC. It consists of the network color code (NCC), which identifies the PLMN, and the base station color code (BCC). Burst [GSM 05.01, 05.02] The nature of TDMA transmission is that radio energy is emitted in a pulsed manner rather than continuously. Mobile stations and BTSs send bursts periodically. Figure G.10 illustrates this for a GSM system in a power-over-time presentation. The actual data transmission is happening during the time period represented in Figure G.10 as a horizontal line. This time period is 148 bits, or 542.8 m s, long. Because GMSK—at least in theory —does not contain an amplitude modulated signal, the effective transmission power is constant over the entire transmission period. Figure G.10 also shows the specified corridor for the allowed power level of the signal over time. In total, a burst has a window of 577 m s, or 156.25 bit, before the next time slot starts. Physically speaking, the power level has to be reduced by 70 dB after 577 m s. These restrictions apply to the uplink as well as the downlink and determine the maximum number of bits an MS can send or receive at one time. The net bit rate is only 114 bits per burst, not 156.25. This reduced number of bits results from the mapping of a physical burst to a logical burst. The physical burst needs bits for administrative purposes that reduce the space available for signaling or user data. Note that all burst types specified for GSM follow a similar pattern: · Each burst always begins with tail bits, which are necessary to synchronize the recipient. Tail bits are, except for the access burst, always coded as ‘000’. · The tail bits are followed by 148 data bits, which differ in format for the various burst types. · Each burst is terminated by another set of tail bits and the so-called guard period. This guard period is required for the sender to physically reduce the transmission power. The guard period is particularly long for the access burst, to allow mobile stations that are far from a BTS and hence experience propagation delays to also access the BTS (see TA ). The functional differences between the five logical bursts, defined for GSM, are as follows: · Normal burst. The normal burst is used for almost every kind of data transmission on all channel types. The only exceptions to that rule are the initial channel request from the mobile station (CHAN_REQ/HND_ACC) sent in an access burst and the transmission of the synchronization data of a BTS that is done via the synchronization burst. All other data transfer on all traffic channels, dedicated control channels (DCCHs) and common control channels (CCHs) in uplink and downlink directions are done in normal bursts. Every normal burst contains 114 bits of useful data that are sent in two packets of 57 bits each. The so-called training sequence (TSC) is placed between the two packets. Note that the term useful data is not entirely accurate in this context, since the 114 bits are already channel coded and therefore contain some overhead (channel coding). Last but not least, there is a stealing flag between the training sequence and each data packet, which indicates to the recipient whether a 57-bit packet actually contains user data or FCCH information. · Synchronization burst. The synchronization burst is used to transmit synchronization channel information (SCH) The synchronization burst uses a format similar to that of the normal burst (Figure G.12). In both cases, there are two data packets, left and right, from the training sequence. However, for the synchronization burst, each packet contains only a 39-bit payload, because the training sequence is 64 bits long. Note that the training sequence for the synchronization channel is identical for all BTSs and therefore allows a mobile station to easily distinguish an accessible GSM-BTS from any other radio system that accidentally works at the same frequency. Therefore, the training sequence in the synchronization channel serves two purposes: (1) It allows the mobile station to determine if there might have been transmission errors, and (2) it allows the mobile station to distinguish a GSM source from other transmission systems on the same frequency. · Access burst. In contrast to the bursts described so far, the access burst comes in a rather unique format because of its special tasks (Figure G.12). A mobile station uses the access burst only for the initial access to a BTS, which applies in two cases: (1) for a connection setup starting from the idle state and (2) for handover (see under synchronized handover). In the first case, the MS sends the CHAN_REQ message in an access burst to the BTS. In the second case, the MS sends HND_ACC messages that also are mapped on access bursts. In both cases the MS does not know the current distance to the BTS and, hence, the propagation delay for the signal (see TA ). As long as the propagation delay is not known to the MS, the MS assumes it is zero. Therefore, it generally is uncertain if the access burst arrives within the receiver window of a BTS and how big the overlap is (Figure G.11). That is the reason for the lesser length of an access burst and the longer duration of the guard period. To ensure that an access burst arrives at the BTS during the proper time period the number of bits for the access burst was set to only 88 bits. The maximum distance between BTS and MS is, with this timing, about 35 km. The normal burst would not fit into the receiver window if the unknown propagation delay was greater than zero. That is the reason why the normal burst is used only after the distance of the MS from the BTS is determined, and the MS is able to adjust its transmission accordingly. The adjustment parameter is called offset time and is calculated fairly simply. The BTS knows format and length of an access burst and is able to determine the actual propagation delay from when the signal arrives back at the BTS after being relayed by the MS. That also allows calculation of the distance of an MS from the BTS. The BTS provides the offset time to the MS, which in turn transmits its signal earlier, exactly by that time period (see TA ). The format of an access burst is also different from the other bursts. The access burst begins with 8 tail bits, rather than 3 as in the case of the other bursts, and the access burst always starts with the bit sequence 0011 1010 bin . The tail bits, together with the following 41- bit synchronization sequence which also always carries the same value, allows the BTS to distinguish the access burst from error signals or interfering signals. Hence, the access burst serves on the uplink a similar purpose as the synchronization burst does on the downlink. Nevertheless, in practice, it is common that the BTS determines background noise to be a CHAN_RQD message, as presented in Chapter 6. The data field of an access burst is only 36 bits long and contains either a CHAN_RQD or an HND_ACC message. Note that both messages actually contain only 8 bits of “useful data.” · Frequency correction burst. The most simple format of all the bursts is used for the frequency correction burst, which is transmitted only in the frequency correction channel (FCCH) (Figure G.12). All 148 bits (142 bits + 6 tail bits) are coded with 0. A sequence of zeros at the input of a GMSK modulator produces, because of the peculiarities of the GMSK modulation, a constant transmitter frequency which is exactly 67.7 kHz above the BCCH median frequency. Therefore, the frequency of the FCCH is always 67.7 kHz above the frequency that is advertised as the downlink frequency. This constant transmission frequency allows an MS to fine-tune its frequency to the BCCH frequency, to subsequently be able to read the data within the synchronization burst. · Dummy burst. When the MS powers up, it checks the power level of the BCCH frequencies of the cells (BTSs) nearby to determine which BTS to use as a serving cell (Figure G.12). Similarly, when the MS is active, that is, involved in a call, the power level of the BCCH frequencies of the neighbor cells serve as basis for a possible handover decision. To be useful as a reference, the BCCH frequency has to be transmitted with a constant power level. Thus, all time slots have to be occupied, and it is not allowed to apply power control on the downlink. For this purpose, the dummy burst was defined. These dummy bursts are inserted into otherwise empty time slots on the BCCH frequency. To prevent accidental confusion with frequency correction bursts, the dummy burst is coded with a pseudorandom bit sequence predefined by GSM. CBCH [GSM 03.41, 07.05] Cell broadcast channel. Used to transmit broadcast messages to mobile stations. The transmission rate of this optional channel is 782 bps. Network operators may choose to equip a CBCH instead of a SDCCH CCCH [GSM 05.01/05.02] Common control channel. Generic term for all point-to-multipoint channels on the Air-interface. CCCHs are in the downlink direction, in particular the BCCH, the PCH, the CBCH , the AGCH . The only CCCH in the uplink direction is the random access channel (RACH). Network operators may configure the BCCH frequency to carry CCCHs in all even-numbered time slots (0, 2, 4, 6). DTX [GSM 05.08, 06.12, 06.31, 06.32, 08.60] Discontinuous transmission. During a telephone conversation, typically only one party speaks at a time. At times, no one speaks. It is practical to switch off the Air-interface partly or completely during those silent times until the conversation resumes. One problem to avoid is clipping, that is, the situation when beginnings and ends of words are cut off because the volume of the speech is below a threshold and considered to be silent time. Setting the volume threshold is difficult because different languages have different dynamics, and what appears to be good enough for English may be poor quality for spoken Chinese. The process of detecting silent time and cease transmission is called discontinuous transmission. DTX needs to be distinguished from DRX (discontinuous reception); both methods are independent of each other. DTX can be activated separately for uplink and downlink. The advantage of using DTX in the uplink direction is the power savings potential within the MS and for both uplink and downlink to reduce interference. One potential problem of DTX is related to background noise. People are so used to it that if it is not there, they assume the connection has been lost, particularly in a mobile conversation. DTX eliminates background noise, so to avoid the impression of a lost connection, artificial noise (called comfort noise) is generated when DTX is active. With DTX enabled, the BTS or the MS sends only one block of data (456 bits according to channel coding) every 480 ms, which, because of interleaving and depending on the channel type, is transmitted with a variable number of bursts. That allows both sides to still measure the quality of the connection and to adjust the comfort noise if necessary. DRX [GSM 03.13/05.02] Discontinuous reception. Used like the DTX as a power saver for the mobile station and to save radio resources. By separating mobile stations into paging groups, a particular mobile station needs to listen to the paging channels (PCH) only in certain multiframes. The transmitter can be switched off in the meantime, in what constitutes the power saving. FACCH [GSM 04.04, 05.01, 05.02] Fast associated control channel. An in-band signaling channel, just like the SACCH, that is associated with an active connection between the MS and the BTS. In contrast to the SACCH, which is sent once per multiframe, the FACCH is used only when no delay is acceptable, that is, if it is not possible to wait for the next SACCH. Then the FACCH is inserted instead of user data. The stealing flag serves to distinguish user data from signaling within a burst. The FACCH can transport 9200 bps in a fullrate channel and 4600 bps in a halfrate channel. (see N201 , Burst .) FCCH [GSM 05.01, 05.02] The BTS sends the frequency correction channel (FCCH) on time slot 0 of a BCCH-TRX in frequency bursts (see Burst ). All 142 data bits are set to zero. Exactly five FCCHs are sent per 51-multiframe. The FCCH allows an MS to identify the frequency of a BTS in GSM. After sending an FCCH, an SCH has to be sent. FN [GSM 05.01/05.02] Frame number. Internal clock of a BTS, to which every MS has to synchronize before the MS can start communicating with the BTS. For that purpose, the BTS broadcasts the current frame number five times for every 51-multiframe over the synchronization channel (see SCH ). The FN can take on values between 0 and 2,715,647, where each FN identifies exactly one TDMA frame within a hyperframe. The value 2,715,647 represents the possible number of frames, where 2,715,647 = (26 × 51 × 2048) - 1. The - 1 is necessary, since the count starts with zero. The equation represents the composition of a hyperframe. It consist of 2,048 superframes, each superframe consists of 26 multiframes with 51 TDMA frames or 51 multiframes with 26 TDMA frames. What is transmitted, however, is not the absolute value of the FN, but the relative position of an FN in the frame hierarchy, consisting of 51-multiframe, superframe, and hyperframe. (See also Chapter 7.) This method of addressing the FN is similar to the way two people tell the time of day. Compare, for example, “The time is 54.900 seconds,” and “The time is 3.15 p.m. ” In practice, the FN is sent as a combination of the parameters T1, T2, and T3, what could be brought in the analogy the example hours (T1), minutes (T2), and seconds (T3’) of a clock. The rule is the following: · T1 (11 bit): Number of the superframe in the hyperframe {0 ¼ 2,047}; T1 = FN div 1326, where 1,326 = 51 ´ 26 · T2 (5 bit): Number of the 51-multiframe in the superframe {0 ¼ 25}; T2 = FN mod 26 · T3: (6 bit): Number of the TDMA frame in the 51-multiframe {0 ¼ 50}; T3 = FN mod 51 · T3’ (3 bit): (T3 - 1) div 10 out of {0 ¼ 4} For T3, only the value of the decade has to be sent, since the synchronization channel is sent exactly five times per 51-multiframe, in fact, always in the position FN = 1, 11, 21, 31, 41 (compare Figure G.31). The single digit value, therefore, is redundant and there is no need for its transmission. The value T3’ {0 ¼ 4} tells the MS exactly which FN in a 51-multiframe is meant and can easily calculate the FN of a 26-multiframe or the absolute value of FN. Note that this rule applies only to the transmission of FN on the synchronization channel. When the CHAN_RQD message is being transmitted, the entire value of T3 has to be sent. That allows the number of the superframe (T1) to be truncated. Indeed, T1’ is used in this case, rather than T1, with T1’ = T1 mod 32. T1’ represents the last five bits of T1. The reason for that is obvious: · First of all, depending on the channel configuration, it is possible to send a RACH, practically anywhere within a 51-multiframe. Thus, T3 cannot be truncated. · Furthermore, the BSC needs to respond to a CHAN_RQD within seconds. It is therefore not necessary to know the absolute number of the superframe. Knowing only the least significant five bits of the superframe number enables the BSS to uniquely identify and address a single CHAN_RQD message within a time period of (2 5 - 1) × 6.12s = 189.72s (a superframe has a cycle time of 6.12s), which is more than sufficient. GSM refers to this type of frame number as starting time where starting time = FN mod 42432 MEAS_RES and MEAS_REP [GSM 04.08, 05.08, 08.58] BTS and MS measure the signal strength and quality of the received signal during an active connection. The MS periodically sends the measurements in a MEAS_REP message to the BTS (in a SDCCH/SACCH every 470.8 ms; on a TCH/SACCH every 480 ms). The BTS adds the measurements received from the MS to its own measurements and sends the result in a MEAS_RES message to the BSC. These measurements serve as input data for the BSC to perform the power control function and handover decision. Power control [GSM 05.05, 05.08] GSM requires that every mobile station is subject to power control. For the BTS, on the other hand, power control is optional. Depending on the quality of a connection, the BSC will request the BTS and the mobile station to adjust their output power. The purpose of power control is to minimize interference with other channels and to increase the working time of the battery. The BSC informs the BTS via the Abis-interface within a BS_POWER_CON message of the output power to be used (Figure G.47). Only if necessary, the BSC will send an MS_POWER_CON message to the BTS to initiate an adjustment of the output power of the mobile station. This new output power level is forwarded to the mobile station within the Layer 1 header of the next SACCH to be sent. Note that one SACCH is sent to the mobile station every 480 ms, always telling the mobile station the current output power. The maximum power is called P n . Starting from there, the output power may be reduced in steps of 2 dB. Power control on the BTS side allows reduction of the output power by 30 dB in 15 steps, while the output power of the MS can be reduced between 20 dB and 30 dB, depending on the standard (GSM, DCS1800) and the power class of the MS. Figure G.47 is an example of the two messages that are used for power control. While the MS_POWER_CON message always uses an absolute value, the BS_POWER_CON message always uses a relative value (P n - X). Note that all downlink channels of the BCCH-TRX have to permanently use the maximum output power P n , since the BCCH is serving as a beacon and reference for the neighbor cell measurements of the mobile stations. RACH [GSM 05.01, 05.02] Random access channel (RACH) is an uplink common control channel (CCCH) that the MS uses to send a connection request to the BTS. The access burst (see burst ) is always used for the transmission of the RACH. The only two messages that are sent on the RACH are CHAN_REQ and HND_ACC, with a net data length of 8 bits and a transmission rate of 34 bps. SACCH [GSM 04.04, 05.01, 05.02] Slow associated control channel (see also FACCH ). The inband control channel assigned to the TCH or the SDCCH. Every 26th burst of a TCH or every 51st burst of an SDCCH is an SACCH. The consequence is that exactly one SACCH is sent per multiframe. Figure G.53 illustrates the format of the SACCH for uplink and downlink. The transmission rate is 391 bps when the SACCH is assigned to the SDCCH. When assigned to the TCH, the transmission rate is 383 bps. SCH [GSM 04.08, 05.01, 05.02] Every BTS broadcasts the synchronization channel (SCH) in time slot zero of the BCCH-TRX. The SCH contains the absolute value of the frame number (see FN ) of a BTS, which is time dependent, and the base station identity code (see BSIC ) for an initial rough identification of the cell. The SCH has a length of 25 bits and is sent in the synchronization burst. SDCCH/4 and SDCCH/8 [GSM 05.01, 05.02] Standalone dedicated control channel. Used for uplink and downlink of the Air-interface to transmit signaling data for connection setup and location update (LU). The transmission rate is 779 bps. The distinction between SDCCH/8 and SDCCH/4 refers to the channel configuration on the Air-interface. An SDCCH/8 channel configuration can never be realized on TS 0 of the BCCH-TRX. The available bandwidth is, because of the BCCH that occupies part of the bandwidth there, not sufficient to allow for that. TS 0 of the BCCH-TRX can be used for, at maximum, one SDCCH/4 channel configuration with four SDCCH subchannels. Stealing flag [GSM 05.03] The stealing flag is 1 bit long and is part of the normal burst. Stealing flags embrace the training sequence (see TSC ). They are used in the uplink and downlink direction to indicate whether and which bits of a traffic channel are used (stolen) to carry signaling information (see FACCH ). Stealing of bits to send signaling information on the traffic channel (see TCH) may become necessary when the MS or the BTS have to immediately send signaling data but the SACCH is not available. Examples of control data are the HND_CMD, CON, and the DISC messages. Note that 456 bits (four bursts) are necessary to transfer such a message, completely. The stealing flag was introduced in order not to lose four consecutive bursts for traffic data. Actually, a signaling message is divided into eight packets with 57 bits each and then transmitted in eight consecutive bursts. Only the even-numbered bits are used to carry signaling data in the first four bursts, while only the odd-numbered bits are used for signaling in the last four bursts (i.e., 5 through 8). That allows use of the remaining 57 bits per burst to carry traffic data TA Timing advance. The agreement in a GSM system is for the MS to send its data three time slots after it received the data from the BTS. The BTS then expects the bursts from the MS in a well-defined time frame. This prevents collision with data from other mobile stations. The mechanism works fine, as long as the distance between MS and BTS is rather small. Increasing distance requires taking into account the propagation delay of downlink bursts and uplink bursts. Consequently, the mobile station needs to transmit earlier than defined by the “three time slots delay” rule. The information about how much earlier a burst has to be sent is conveyed to the mobile station by the TA. The TA is dynamic and changes in time. Its current value is sent to the mobile station within the layer 1 header of each SACCH. In the opposite direction, the BTS sends the current value for TA within the MEAS_RES messages to the BSC (e.g., for handover consideration). The farther the MS is away from the BTS, the larger is the required TA. Figure G.62 illustrates the relation between distance and TA. Using the TA allows the BTS to receive the bursts from a particular MS in the proper receiver window. The BTS calculates the first TA when receiving a RACH and reports the value to the BSC. TA can take any value between 0 and 63, which relates to a distance between 0 km and 35 km. The steps are about 550 m (35 km/63 » 550 m). With respect to time, the different values of TA refer to the interval 0 m s through 232 m s, in steps of 48/13 m s. It is important to note that this value of TA represents twice the propagation delay. Figure G.63 illustrates the effect of TA by an example in which a connection is active on TS 1. Interleaving [GSM 03.05, 03.50, 05.03] Procedure to distribute or interlace the bits of a channel-coded block (see channel coding ) onto several bursts. Since channel coding is designed to detect and correct errors on only a relatively few bits, it is the goal of interleaving to prevent complete loss of the information when a whole burst is corrupted. If, for example, a complete burst is lost, but all the others are transmitted without error, only one bit of a larger piece of information is missing and can be restored by the Viterby decoder. The likelihood of group errors on a radio interface is naturally much higher than errors on single bits. The reason is the effect of fading, which typically is slower than the 270-Kbps transmission rate of the Air-interface. For transmission of data, the bits are distributed even more than in the case of speech. For data transmission, it is even more important not to lose a single bit, since that could render a complete transmission useless. Speech is not very sensitive to single-bit errors. Propagation delay, on the other hand, is crucial for speech and does not have a very high priority for data connections. The more the bits of one sample are spread over time, the longer the receiver has to wait until all bits for a certain sample have arrived. For data services, that essentially affects only timers of the protocol. This affects the RLP protocol for nontransparent data and the end-to-end protocols of terminal applications for transparent data (GSM 03.05, 03.50). In a fullrate speech channel, interleaving accounts for a maximum delay is 37.5 ms, while the maximum delay caused by the more intense interleaving in case of a fullrate data channel is 106.8 ms. Only RACH and SCH are transmitted without interleaving. Figure G.38 illustrates interleaving for a fullrate speech channel. The 456 channel-coded bits of block n are divided into 8 subblocks with 57 bits each and then rearranged. Subblocks 0 through 3 of block n are then interleaved with subblocks 4 through 7 of block n - 1, while subblocks 4 through 7 of block n are interleaved with subblocks 0 through 3 of block n + 1. Initially, subblocks 0 through 3 form the upper half of a burst, while subblocks 4 through 7 form the lower half of a burst. During the subsequent formation of the burst, the bits of the upper half alternatingly join with the bits of the lower half. Stealing flags are inserted in the middle of a burst.  

    最新回复(0)